HLBVH: Hierarchical LBVH
Construction for Real Time Ray
Tracing of Dynamic Geometry

Jacopo Pantaleoni and David Luebke
NVIDIA Research

___Some Background

e Real Time Ray Tracing is almost there*
[Garanzha and Loop 2010, Aila and Laine 2009, Wald et al 2007, ...]

160-200 M rays/s on GF480

___Some Background

e Real Time Ray Tracing is almost there*
[Garanzha and Loop 2010, Aila and Laine 2009, Wald et al 2007, ...]

160-200 M rays/s on GF480

* but only for static scenes

___Some Background

e Real Time Ray Tracing is almost there*
[Garanzha and Loop 2010, Aila and Laine 2009, Wald et al 2007, ...]

160-200 M rays/s on GF480 A il

* but only for static scenes

e Spatial Index construction real-time only for 100K tris!

___Some Background

e Real Time Ray Tracing is almost there*
[Garanzha and Loop 2010, Aila and Laine 2009, Wald et al 2007, ...]

160-200 M rays/s on GF480

* but only for static scenes

e Qur target is 1M dynamic tris

_Some Background

e Many approaches: refitting, partial rebuilds...
but LBVH [Lauterbach et al] probably fastest
available GPU builder

___Some Background

L= 4

e Many approaches: refitting, partial rebuilds...
but LBVH [Lauterbach et al] probably fastest
available GPU builder

e still not fast enough... 1M tris => ~150ms

___Some Background

L= 4

e Many approaches: refitting, partial rebuilds...
but LBVH [Lauterbach et al] probably fastest
available GPU builder

e still not fast enough... 1M tris => ~150ms

e But could be made faster! ©

__LBVH

e Consider barycenters of each primitive B<

__LBVH

O
e Consider barycenters of each primitive B j> °

[
so that it works with point sets B ®

__LBVH

e Consider barycenters of each primitive

so that it works with point sets

e sort them along a 1D Morton curve

through a grid...

!

01 | /~ 11

\ I A

10001 0011

00 0000 B 0010 10

10

__1BVH Bl

O
Consider barycenters of each primitive o j> °
so that it works with point sets B ®
0l [/~ 4\ 11
e sort them along a 1D Morton curve |
through a grid... ‘ N NS

00 0000 B 0010] 10

e and group them by cell

11

___1LBVH

e Morton codes computed using 10 bits per component

e primitives sorted with a single 30bit global sort

e parallel hierarchy emission required 2 additional

sorting operations on C2(N * 30) split planes

12

H(ierarchicaI)L BVH

___HLBVH: at a glance

e hierarchical process 4 : A

T
4 D Q[>4 B <
A A

e exploit spatial and temporal coherence in the input mesh

e novel hierarchy emission algorithm

e novel SAH hybrid

14

HLRVH: brimiti i

e Given a point its Morton code is obtained interleaving

the bits of its coordinates:

e.g. (0100, 1001,0111)=>010101001011

e Each triplet of bits => next octant in a grid hierarchy:

2D example: 0111

01
11

15

HLBVH: primiti i

e Consider a 2 level hierarchy:

. A A
. 3 bit 4
coarse m ItS 74 74
fine: 3n bits N 2\ [> 4 D 4\
A1 A

16

HLBVH: primiti .

e Consider a 2 level hierarchy:

: A A
. 3 bit 4
coarse m ItS 73 7
fine: 3n bits q, A\ [> 4 D <
Ay A

e smaller m => higher chances consecutive prims

fall in the same voxel (e.g.{1,2}, {3,4})

1

HLBVH: primiti .

e Consider a 2 level hierarchy:

: A A
. 3 bit 4
coarse m ItS 73 7
fine: 3n bits q, A\ [> 4 D <
Ay A

e smaller m => higher chances consecutive prims

fall in the same voxel (e.g.{1,2}, {3,4})

e Exploit coherence:
Compress-Sort-Decompress [Garanzha and Loop 2010]

within coarse grid

18

e _ase o <A
__HIBVH: primitive sorting (part 1)

e Compute n-bit Morton codes

))

%3 %? '
a5 a®las o«
AV AV

e Compress: run-length encode based on first 3m bits

19

U1 BYH: orimiti ing 1)

e Compute n-bit Morton codes

=

e Compress: run-length encode based on first 3m bits

e Sort: do a 3m-bit radixsort of the rle key blocks

20

L BVH: nrimiti ing_(part 1)

e Compute n-bit Morton codes

=

e Compress: run-length encode based on first 3m bits

e Sort: do a 3m-bit radixsort of the rle key blocks

e Decompress: run-length decode sorted keys

21

U1 BYH: orimiti ing (part 1)

e CSD at work:
{7,7,1,1,1,3,3,4,5,5}

22

HLBVH: primiti ing | \

e CSD at work:

{7,7,1,1,1,3,3,4,55} . ' A
e Compress: q, b A O a, 5 <
{7,1,3,4,5} run values | 2: Ao

{2,3,2,1,2} runlengths

23

L1 BVH: primiti ing (part 1)

e CSD at work:

{7,7,1,1,1,3,3,4,55} _ U L

e Compress: a5 4 > 4?' S
{7,1,3,4,5} run values | 2: Ay,
{2,3,2,1,2} runlengths

e Sort:

{1,3,4,5, 7 } run values
{3,2,1,2,2}run lengths

24

L1 BVH: primiti ing (part 1)

e CSD at work:

{7,7,1,1,1,3,3,4,55} _ U L

e Compress: a5 4 > 4?' S
{7,1,3,4,5} run values | 2: Ay,
{2,3,2,1,2} runlengths

e Sort:

{1,3,4,5, 7 } run values

{3,2,1,2,2}run lengths
e Decompress:

{1,1,1,3,3,4,5,5,7,7}

25

Meshes often show such

coherence

Levy et al

26

U1 BYH: orimiti ing (part 2)

Prims are now sorted

in coarse voxels

4
4. b

5 4

AV

2l

U1 BYH: orimiti ing (part 2)

e Prims are now sorted

in coarse voxels

e Sort within each voxel using

intra-cta (shared-mem) sort

AZ
4!
4, 5
As

AZ
4, K|S
AV

>

nvipiA. B

28

HIBVH: orimiti : (Its)

A
nvipia

e By CSD we have substantially

reduced BW taking advantage | _, b,
of spatial coherence 4, &
A

e And if we reuse the final ordering
across frames, we can take advantage

of temporal coherence too

AZ
4!
4, 5
As

AZ
4, K|S
AV

29

LBV hi ! ccinn

e This is all good, but we are still left with

hierarchy emission, which is the hard part:

hierarchy emission prim sorting
2*C)(N*30) sorts vs 1 * O(N) sort

in LBVH

30

[] [] L] «D’
___HILBVH: hierarchy emission nvioia.

e |[nput: array of sorted prims

e Qutput: array of nodes forming a tree

31

HLBVH: hierarchy emission

e |[nput: array of sorted prims

(sequence of Morton codes) 0 1 2 3 (8 . Na N3 N2 ND

0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 il
0 0 0 1 1 1 1 1 0
1 1 1 0 0 1 1 1 0
0 0 1 0 0 0 0 0 0
1 il 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0 0

SZ

HLBVH: hierarchy emission

e |[nput: array of sorted prims

(sequence of Morton codes) © 1 2 3 (8 -1 NaN3 N2 Nl

0 0 0 0 0 0 0 0 it

0 0 0 1 0 0 0 1 il

e Qutput: sequence of nested o o o 1 1 . [EEEEEEEE
1 1 1 0 0 1 1 1 0

SegmentS 0 0 1 0 0 0 0 0 0

1 1 0 0 0 0 1 0 0

0 1 0 1 1 0 0 0 0

33

HLBVH: hi I e

e |[nput: array of sorted prims

(sequence of Morton codes)

e Qutput: sequence of nested

segments

(@ o = o (@) o

R o - o o O

o O = = o o o

0

= O o (=) =

= O o o = (@] [(=]

(e 1 (@) (e SRS (e S ()

(=R (e)8R S (S e (e)

X
nVIDIA

34

HLBVH: hierarchy emission ﬂ_

e Partial Breadth First Traversal

e Consider p-bit planes :>Z o 0 o 0 . 0 0 o0 1

o 0 1 0 o G
at a time GGG T E () T T T
G T
o [G [o o IGe G
e e e G N GG
oo R O 0 0 o0

35

HLBVH: hierarchy emission ﬂ_

e Partial Breadth First Traversal

0 0 0 0 0 0 0 0 1

e Consider p-bit planes e e
at atime G [GO [T T (P T T T [

1 1 1 0 0 1 1 1 0

0 0 1 0 0 0 0 0 0

|:> T N (G O () O IR (O ()

0 1 0 1 1 0 0 0 0

36

—— o Bl

e Partial Breadth First Traversal

0 0 0 0 0 0 0 0 1
e Consider p-bit planes
0 0 0 1 0 0 0 1 1
at a time o (GO [FTO T (P SO (TR T [
1 1 1 0 0 1 1 1 0
0 0 1 0 0 0 0 0 0
|:> (NN 0 0 0 [T R i
0 1 0 1 1 0 0 0 0
e For each segment, emit a treelet -
[e]
foo] (] [Ea] [=]
o] [e] o] 1]

S

e Partial Breadth First Traversal

Morton code segment

Block descriptor

ON ION O8I FON 1 FIN |1 25 01

O 1l 1 0 O0 w1l 1

10 .1 1100
e Details in the paper (s |

L1 [

|[o:01| | 2 | |[4:5]| | 8 |

(o] (][] [wa]

Treelet

38

e Partial Breadth First Traversal

Morton code segment

Block descriptor

ON ION O8I FON 1 FIN |1 25 01

O 1l 1 0 O0 w1l 1

10 .1 1100
e Details in the paper (s |

L1 [

|[o:01| | 2 | |[4:5]| | 8 |

(o] (][] [wa]

Treelet

39

e Lauterbach and Wald suggested to perform SAH at the
bottom of the tree

Cheap

cunn
N OO

40

e Lauterbach and Wald suggested to perform SAH at the
bottom of the tree

SAH
e But with CSD we can do better! ﬁ [

Our coarse clusters can be used Cheap # d b #

to build a SAH-based top-level d b [
B B

tree

41

e Lauterbach and Wald suggested to perform SAH at the

bottom of the tree

e But with CSD we can do better! # -
Our coarse clusters can be used Cheap * d b #
to build a SAH-based top-level [
2 ® B ®
tree

e As the clusters are few, the overhead is low

42

N ' |

e Not only this is faster...

/ /

SAH

2 Lo
e It’s also better because cheap # d b i
= M
J

the top-level tree is what -

matters mostly

v

43

____HIBVH: results

e We reduced BW by >10x

e We exploit spatial and temporal coherence

e Support fully dynamic geometry, from deformations

to chaotic fracturing

e Low-overhead SAH hybrid

44

e 1M fully dynamic tris => ~35ms

45

e 2M incoherent

e 350k coherent

40

30

—+o—Turbine Blade
-B-Armadillo

46

____HIBVH: cade

hierarchy_emission(codes, N_prims, n_bits)

1 int segment_heads[]
= 2 int head_to_node[N_prims] = {-1}

e Cleanly coded using Thrust S head.to_nodkI0) = segment_headslo] 0
7
4 for (level = 0;level < n_bits:level += p)
5 // compute segment ids
6 segment_id[i] = scan (head_to_node[i] # —1)
7
8 // get the number of segments
9 int N_segments = segment_id[N_prims-1]
10
11 intP=(l<<p)-1
12

13 // compute block descriptors

14 int block_splits[N_segments * P | = {-1}
15 foreach i in [0.N_prims)

16 emit_block_splits(

17 i, [in] primitive index to process

o Wi I I be ava i Ia b I e at : :2 codes, [in] primitive Morton codes

[level, level + p). [in] bit planes to process

20 segment_id, [in] segment ids
21 head_to_node, [in] head to node map
http - //COd e g O Og I e CO m/p/h I th/ 22 segment_heads, [in] segment heads
L] L] L] 29 block_splits) [out] block descriptors
24

25 // compute the block offsets summing

26 // the number of splits in each block

27 int block_offsets| N_segments + 1]

28 block_offsets[s] = ex_scan (count_splits(s))
29 int N_splits = block_offsets[N_segments]

30
31 // emit treelets and update
32 // segment_heads and head_to_node
33 foreach segment in [0.N_segments)
34 emit_treelets(
35 segment, [in] block to process
36 block_splits, [in] block descriptors
37 block_offsets, [in] block offsets
38 segment_id, [in] segment ids
39 head_to_node, [infout] head to node map
g il 40 segment_heads) [in/out] segment heads
-) 41
1l & ; i 42 node_count += N_splits * 2
U

Figure 4: Pseudocode for our hierarchy emission loop.

o 47

Thank You!

48

