Runtime Thread Creation for Improved Ray-Tracing

Performance on Wide SIMT/SIMD Processors

Michael Steffen Joseph Zambreno
Introduction - Benchmark Scenes N
Wide SIMD/SIMT machines often require a static allocation of a group of threads (called a Thread
Warp) that are executed in lockstep through the entire application. Branching is supported within a N

thread warp by executing both control flow paths for all threads and disabling processors running
threads requiring the opposite control path. Applications requiring complex control flow and
heterogeneous thread runtimes often result in low processor efficiency. We introduce a hardware
architecture designed to allow for threads to be created dynamically during runtime. Dynamically
created threads can be grouped into new thread warps based on the threads control path, allowing for
improved processor efficiency.

We use a ray-tracing application as our benchmark since it is an example of both complex control flow
and heterogeneous thread runtimes. While ray-tracing applications support large amounts of parallel
threads, performance is limited by complex control paths from three data dependent looping
operations

Ray-Tracing Performance for Different SIMD/SIMT »

Branching Hardware Ray PrOCESSing AIgOchm

1
while ray not terminated
S 038 while node Is not a leaf node
£ traverse to the next node
S 06 while node contains untested objects \ /
9 perform ray-object intersection test
ge;
.g 0.4
e SIMT Pipeline and Control Flow
= 0.2
o . . .
2 « Example of SIMT branching using warp size of 4 threads.
5 « A warp execute both control path codes and turns off threads not
Thread Warp 4 S : " :
SER MIMD Dynamic PDOM Dynamic Hardware i requiring current instruction (Empty filled arrows)
Threads Algorithm Theoretical (MIMD) . Threads available e 50 Nevipe AeivelMaen
Theoretical Theoretical : for scheduling v = ool exG = 'fﬁq 185
Thread Warp 8 1—|A” 111 @ T 0001
Thread Warp 7 TOS —*| G B 7110
: : : . : B/1110 (c) Initial State
Dynamic Thread Pipeline Dynamic Thread Algorithm l l_ _l I cot Recony PO Next PG Active Mack
e s tonem e S Croo] - [Brerro] [Foct é T
_ : G E 1110 | (i)
Generation | 3: store state to memory T Decode I_* f_l E D 0110 |(ii)
1 l Kerne 4: if node is not a leaf then Tree | YYVVYVVVY E/1110 TOS —* E C 1000 |(iii)
- Spawn 5: spawnto [ine 1 S Register Read| (d) After Divergent Branch
free 6: endif e | G111 je— Ret./Reconv. PC_ NextPC _ Active Mask
Traversal 7: spawn to line 9 W, R *‘iLE R Vst ezt — - G 1111
| g memory helarchy e = 5001 |
] l Found Leat 9: restore state from memory h Lol T el 1o et TOS —* G E 1110
Intersection 10: ray-object intersection test | " \ (e) After Reconvergence
11: store state to memory Int ti : \Miss?| / Thread Warp 5
| Test 12: if untested objects remain then Tr;;rsec o e -) | Thread Warp 6 r__'_ﬂ_“___,l .-—E— c b B _F .--—(—3---— r___{ﬂ_‘_
ITeStEd All Objects 13: spawn to line 9 1 B e | | | f | I _E}i T | e |
14: end if : - e/ ndind nd ud 59 5 B
anagemen 16: . Thread Warp > I b IS b P) SN—) PR S— — — |
' Found intersection 17: restore state from memory\ Writeback - ' :> Time
or done traversing tree 18: if ray is not finished then . (b) Re-convergence at Immediate Post-Dominator of B
19: spawntolinel
_ 20 end if Management
Shading il : : Figures from Fung et al. Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow
. spawn to shading algorlthm/
2 . .) -
Runtime Thread Creation / Experimental Results \

» Replace branching statements that cause low processor efficiency with Post-Dominator Hardware (PDOM)

our new spawn instruction that creates a new threads that begins
execution at the original branching PC.

Bad Efficiency | Fetch Stalled
Bl WO

* New threads are combined into new warps based on the starting PC. S V»ﬁ;g
» When there are enough threads to create a warp, the warp is then S ias
scheduled back onto the processor. g s
Q o B \W25:28
0 J = Good Efficiency |mm w29:32
|_
4 - |2
Thread Creation Hardware 3
0
Available Thread o Clock Cycles 300,000
Thread Warp warps for Scheduling
Runtime Thread Creation Hardware
Thread Warp , 1 000
Partial Thread Warp /
Thread Warp Pool
S
A ©
Spawn =
Processors > B g,
(qe)
Y
W C =
a >
| 0
No [<

Completed Warp

Yes |- Thread Warp FIFO

Clock Cycles BOOW

/
N
’.

