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Introduction - Benchmark Scenes N
Wide SIMD/SIMT machines often require a static allocation of a group of threads (called a Thread
Warp) that are executed in lockstep through the entire application. Branching is supported within a N

thread warp by executing both control flow paths for all threads and disabling processors running
threads requiring the opposite control path. Applications requiring complex control flow and
heterogeneous thread runtimes often result in low processor efficiency. We introduce a hardware
architecture designed to allow for threads to be created dynamically during runtime. Dynamically
created threads can be grouped into new thread warps based on the threads control path, allowing for
improved processor efficiency.

We use a ray-tracing application as our benchmark since it is an example of both complex control flow
and heterogeneous thread runtimes. While ray-tracing applications support large amounts of parallel
threads, performance is limited by complex control paths from three data dependent looping
operations
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» Replace branching statements that cause low processor efficiency with Post-Dominator Hardware (PDOM)

our new spawn instruction that creates a new threads that begins
execution at the original branching PC.
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