
Runtime Thread Creation for Improved Ray-Tracing 
Performance on Wide SIMT/SIMD Processors

Michael Steffen Joseph Zambreno

Wide SIMD/SIMT machines often require a static allocation of a group of threads (called a Thread
Warp) that are executed in lockstep through the entire application. Branching is supported within a
thread warp by executing both control flow paths for all threads and disabling processors running
threads requiring the opposite control path. Applications requiring complex control flow and
heterogeneous thread runtimes often result in low processor efficiency. We introduce a hardware
architecture designed to allow for threads to be created dynamically during runtime. Dynamically
created threads can be grouped into new thread warps based on the threads control path, allowing for
improved processor efficiency.

We use a ray-tracing application as our benchmark since it is an example of both complex control flow
and heterogeneous thread runtimes. While ray-tracing applications support large amounts of parallel
threads, performance is limited by complex control paths from three data dependent looping
operations

Introduction Benchmark Scenes

Experimental Results

Clock Cycles

A
ct

iv
e 

Th
re

ad
 W

ar
p

s

0 300,000

0

1,000
Post-Dominator Hardware (PDOM)

Clock Cycles

A
ct

iv
e 

Th
re

ad
 W

ar
p

s

0 300,000
0

1,000
Runtime Thread Creation Hardware

Bad Efficiency

Good Efficiency

Ray Processing Algorithm

while ray not terminated

while node is not a leaf node

traverse to the next node

while node contains untested objects

perform ray-object intersection test

SIMT Pipeline and Control Flow
• Example of SIMT branching using warp size of 4 threads.

• A warp execute both control path codes and turns off threads not

requiring current instruction (Empty filled arrows)

Runtime Thread Creation

• Replace branching statements that cause low processor efficiency with

our new spawn instruction that creates a new threads that begins

execution at the original branching PC.

• New threads are combined into new warps based on the starting PC.

• When there are enough threads to create a warp, the warp is then

scheduled back onto the processor.

Thread Warp

Thread Warp

Thread Warp

Available Thread 
warps for Scheduling

Processors
Spawn

Partial Thread Warp 
Pool

A

B

C

Thread Warp FIFO
Completed Warp

D
o

n
e

No

Yes

Thread Creation Hardware

Figures from Fung et al. Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow

0

0.2

0.4

0.6

0.8

1

PDOM MIMD Dynamic 
Threads

PDOM 
Algorithm 

Theoretical

Dynamic 
Theoretical

Hardware 
(MIMD) 

Theoretical 

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Ray-Tracing Performance for Different SIMD/SIMT 
Branching Hardware

Tree 
Traversal

Intersection 
Test

Tree 
Management

Shading

Ray 
Generation

Found Leaf

Tested All Objects

Found intersection
or done traversing tree

Kernel

Spawn

Dynamic Thread Pipeline Dynamic Thread Algorithm
1:   restore state from memory
2:   traverse tree to next node
3:   store state to memory
4:   if node is not a leaf then
5:       spawn to line 1
6:   end if
7:   spawn to line 9
8:
9:   restore state from memory

10:   ray-object intersection test
11:   store state to memory
12:   if untested objects remain then
13:        spawn to line 9
14:   end if
15:   spawn to line 17
16:
17:   restore state from memory
18:   if ray is not finished then
19:       spawn to line 1
20:   end if
21:   spawn to shading algorithm

Tree 
Traversal

Intersection 
Test

Tree 
Management


