
A Work-Efficient GPU Algorithm
for Level Set Segmentation

Mike Roberts

Jeff Packer

Mario Costa Sousa

Joseph Ross Mitchell

What do I mean by work-efficient?

If a parallel algorithm performs
asymptotically equal work to the most
efficient sequential algorithm, then the

parallel algorithm is work-efficient.

What do I mean by segmentation?

What do I mean by segmentation?

What do I mean by segmentation?

Goal: Fast, interactive, and accurate segmentations even when the data is
noisy and heterogeneous

Why Level Sets?

Good: Competitive accuracy compared to manual segmentations
by experts (Cates et al. 2004)

Why Level Sets?

Good: Competitive accuracy compared to manual segmentations
by experts (Cates et al. 2004)

Bad: Can be slow, even on the GPU

Why Level Sets?

Good: Competitive accuracy compared to manual segmentations
by experts (Cates et al. 2004)

Bad: Can be slow, even on the GPU

This limitation motivates our algorithm

Segmentation with Level Sets
• Embed a seed surface in an image

• Iteratively deform the surface along normal according to local
properties of the surface and the underlying image

iterations

Segmentation with Level Sets

Represent the level set surface as the zero isosurface of an implicit field

Segmentation with Level Sets

• Deformation occurs by updating fixed elements in the implicit field

• Surface splitting and merging events are handled implicitly

• Requires many small iterations for surface to converge on a region of interest

Previous Work

• CPU
- Narrow Band (Adalsteinson and Sethian 1995)
- Sparse Field (Whitaker 1998, Peng et al. 1999)
- Sparse Block Grid (Bridson 2003)
- Dynamic Tubular Grid (Nielson and Museth 2006)
- Heirarchical Run-Length-Encoded (Houston et al. 2006)
- Above algorithms:

- leverage spatial coherence by only processing elements near level set surface
- require at least linear time to update the level set field

• GPU
- GPU Narrow Band (Lefohn et al. 2003, 2004; Jeong et al. 2009)
- Requires a linear number of steps to update the level set field
- Saves memory by only storing a sparse representation of the level set

field

Our Approach

Leverage spatial and temporal coherence in the level set
simulation to reduce GPU work

Our Approach

Leverage spatial and temporal coherence in the level set
simulation to reduce GPU work

Contributions:

1. Novel algorithm that limits computation by examining the temporal
and spatial derivatives of the level set field

2. Work-efficient mapping to many-core GPU hardware that updates the
level set field in a logarithmic number of steps

Leveraging Temporal Coherence

We only want to spend time updating the voxels
that are actually changing

Necessary conditions for voxels to be in the
active computational domain:

1. Are we close to the surface border? (Lefohn et al. 2003)

2. Is the field neighborhood changing over time?

Leveraging Temporal Coherence

“Are we close to the surface border?”

“Are we close to the surface border?” AND “Is the field neighborhood changing over time?”

currently active computational domain segmented region

Leveraging Temporal Coherence

Live Demo

Our Work-Efficient GPU Pipeline

Initialize dense list of active coordinates

Update level set field at active coordinates

Generate new active coordinates (duplicates are OK)

Yes

No Remove duplicates

Is the new dense list empty?

Compact new active coordinates into a new dense list

Segmentation Converged

Initializing a scratchpad buffer with active
coordinates

Compacting the scratchpad buffer to
produce a dense list

For more details see Harris et al. 2007; Sengupta et al. 2007, 2008

Compact

Updating the level set field at active
coordinates

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Generating new active coordinates into a
series of auxiliary buffers (duplicates are OK)

Removing duplicate active coordinates from
the auxiliary buffers

Removing duplicate active coordinates from
the auxiliary buffers

Removing duplicate active coordinates from
the auxiliary buffers

Removing duplicate active coordinates from
the auxiliary buffers

Removing duplicate active coordinates from
the auxiliary buffers

Removing duplicate active coordinates from
the auxiliary buffers

Removing duplicate active coordinates from
the auxiliary buffers

Compacting the auxiliary buffers to produce
a new dense list of active coordinates

Compact

• Compact (Harris et al. 2007; Sengupta et al. 2007, 2008)
– O(logn) steps

– O(n) work

• Rest of our algorithm
– O(1) steps

– O(n) work

Good: Our algorithm is work-efficient and requires a logarithmic
number of steps to update the level set field

Bad: Our algorithm requires memory proportional to the size of
the level set field

Algorithmic Complexity

Experimental Methodology

• 256x256x256 human head MRI (ground truth from expert)

• Segmented white and grey matter

• Variety of noise levels

• 10 repeated segmentations per noise level

• Nvidia GTX 280

• Measured computational domain size, speed, accuracy

• Repeated using our algorithm and the GPU narrow band
algorithm (Lefohn et al. 2004)

Accuracy

SNR = Signal-to-noise Ratio
D = Dice Coefficient
TCF = Total Correct Fraction of Labeled Voxels

Computational Domain Size

Speed

Limitations

• Requires a large amount of GPU memory
– About 500 MB for a 256x256x256 data set

• Scaling to high order neighborhoods increases memory
requirements
– Need extra auxiliary buffers

– Increases redundant work per thread

Future Work

• Reduce the memory requirements
– Implement sparse representation of the level set field and other

buffers (i.e. hierarchical run-length-encoded level sets) on the GPU

• Applicable to other level set problems in computer graphics?
– Fluid simulation, surface reconstruction, image restoration, etc

• Are there other applications for the duplicate removal
algorithm?

?

Questions?

Bonus Slides

Speed Function

Speed function proposed by Lefohn et al. 2003, 2004



curvature

)1( ()
curvature term

 controls the smoothness of the segmentation

image

intensity

grow

()
data term

contract

The curvature term enforces a smooth segmentation and prevents leaking

Speed Function

with curvature influence without curvature influence

Initialize level set field and active
computational domain

Update level set field at active voxels

Voxels changing in space and time
form the new active computational

domain

Is active
computational

domain empty?

Segmentation
converged

Yes

No

Temporally Coherent Algorithm

Initializing the level set field and the active
computational domain

Updating the level set field at active voxels

Finding the voxels that are changing in space

Finding the voxels that are changing in time

Finding the voxels that are changing in
space and time

Speed vs. Computational Domain Size

Speed per Subroutine

