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Introduction

The physics engine has become an ubiquitous component of graphics simulations in recent years. As computing object collisions is expensive, physics engines  
employ a range of techniques to alleviate these costs. Similarly, ray-tracing is computationally expensive and has been subject to much research aiming to  
increase its speed to make it viable in real-time simulation. Currently, there is no interaction between the ray-tracer and the physics engine. We take an  
aggregate approach, treating the system as a whole and investigate areas where the physics engine can provide information to accelerate the ray-tracer. 

The physics engine has knowledge of the state of all objects in the simulation in terms of location, velocity and acceleration. We propose that such information  
will accelerate the ray-tracer which operates on the same objects.

Sleeping

Sleeping is a physics engine acceleration technique 
that clusters spatially coherent physics objects into 
groups  known  as  "islands".  When  the  linear  and 
angular  velocities of  all  objects in an island have 
fallen below a threshold, it is marked as sleeping. It 
is  no  longer  necessary  to  check  these  objects 
against  any  other  sleeping  object  for  collision  or 
perform  other  calculations  on  them  such  as 
applying  gravitational  forces.  Sleeping  dynamic 
objects therefore act like static objects in this state. 
If  an  active  object  enters  the  sleeping  island's 
AABB, the islands is reactivated for more low-level, 
higher  precision  collision  detection.  Relieving the 
engine  of  such calculations  can greatly  decrease 
the  computational  overhead  of  a  physics 
simulation. 

Integration

In a simulation with  multiple copies  of  the same 
rigid  body,  instancing  may  be  used  in  order  to 
reduce  memory  overhead.  Although  this  greatly 
improves ray-tracer speed, there is still overhead in 
building  the  top-level  BVH  and  transforming  the 
rays. In typical physics simulation involving gravity 
and friction, moving objects naturally tend to come 
to  rest.  Without  constant  energy  injection,  all 
initially  moving objects will  eventually  come to a 
stop. As previously noted, such rest states offer an 
opportunity for acceleration in the physics engine 
through sleeping. A similar technique, which we call 
"integration", can be applied in the same scenarios 
to  accelerate  the  renderer.  As  static  objects  are 
fixed, their local coordinate system can be set to 
match  the  world  coordinate  system.  This  means 
that  no  ray  transformations  are  necessary  when 
intersecting them. Dynamic objects that have come 
to rest may be thought of as a special case. Instead 
of transforming each ray that potentially intersects 
these  objects,  we  transform  the  now  resting 
object's primitives into the world coordinate system 
and then add this geometry to the static geometry. 
This has two effects:

• Reducing the number of primitives in the top-
level  BVH,  therefore  lowering  top-level 
acceleration  data  structure  (ADS)  build  time 
and the time spent in the top-level ADS. 

• Reducing  the  number  of  ray  transformations 
required. 

When a previously integrated object is moved, the 
current static ADS becomes invalid. We can switch 
back  to  the  original  static  ADS  and  re-add  the 
previously integrated objects back into the dynamic 
hierarchy to regain a valid state. Objects still in a 
sleeping state may then be integrated again. If the 
original data structures are still stored in memory, 
the performance cost of switching or "reactivation" 
is very small. Integration, however, has a cost as it 
requires an ADS build. In order for integration to be 
beneficial,  the  cycles  spent  performing  the 
integration build must at least be recouped by the 
ray-tracer  before  a  reactivation  occurs.  In  a 
dynamic  system  with  many  objects  moving, 
deactivation  and  reactivation  events  may  follow 
closely. 

Deciding to Integrate 

An island should be integrated when C i < tn, where 
Ci is the ADS build cost for integration and tn  is the 
gain  achieved  by  integration.  Ci  is  not  precisely 
known but  can be approximated easily  based on 
previous  ADS  builder  performance  with  known 
primitive input counts. tn may be costly to calculate 
or  completely  unpredictable  due to user  input.  It 
can therefore  be  approximated based  on several 
previous integration/reactivation events. In order to 
increase the accuracy of tn, we track events where 
integration  is  precluded  from  happening  by  our 
current  heuristic  values  and  the  costs  for 
integration  had  it  occurred.  This  allows  tn  to 
converge more rapidly. 

Reducing  Ci presents  more  opportunities  for 
integration  and  therefore  better  renderer 
performance.  We take advantage of our  pre-built 
static  geometry  to  speed  up  the  insertion  of 
deactivated objects  into  the  ADS.  A  from-scratch 
rebuild  of  a  tree-based  ADS  using  an  O(nlog  n) 
builder  has  a  running  time  of  O((k+n)log(k+n)) 
where  n is the number of triangles in the original 
static scene and k is the number of triangles in the 
complete set of deactivated objects. 

By using the static  geometry's ADS as a starting 
point,  we reduce this  operation to  O(k  log(k+n)). 
We perform  k insertions into the tree, each insert 
taking O(log(k + n)) time. 

When  compared  to  full  rebuilds  in  practice, 
insertion yields similar ray-tracing speeds although 
building several orders of magnitude faster. 

Geometry Caching

If  an  island  that  was  previously  integrated 
reactivates,  we  cannot  use  the  current  static 
scenery  ADS  any  longer  as  it  contains  the  now-
moving objects. We may switch back to the original 
pristine  scenery.  However,  it  possible  that  the 
world-state  is  now  similar  to  a  previous 
configuration where some or all of the still sleeping 

islands were sleeping. To exploit this, we introduce 
geometry caching. 

The cache contains snapshots of  the static scene 
geometry taken before each new island integration. 
Each snapshot is also marked with the islands that 
have been integrated into the snapshot. Initially the 
cache contains  only  the  pristine  static  geometry. 
This is marked as containing no integrated islands 
and is the "worst case" fallback position. 

When an island has gone to sleep, we first save our 
current static geometry as an object in the cache, 
marked with the list of islands integrated. We then 
integrate  the  new sleeping  island  into  the  static 
geometry. If a previously sleeping island wakes up, 
we scan the cache and remove any cache objects 
marked as containing that island as these are now 
invalidated.

When a static ADS is added to the cache, we also 
store  in  the  cache  entry  a  list  of  the  islands 
integrated into that ADS. The ADS builder requests 
from the cache an ADS with a list of the islands it 
needs to integrate. If a cache entry is found that 
contains  all  of  the  requested  islands  already 
integrated,  this  means  that  the  builder  has  no 
further work to do. We refer to this as a full cache 
hit.  If  the  cache  contains  an  entry  with  only  a 
subset of the requested islands integrated, we refer 
to  this  as  a  partial  cache  hit.  As  this  partial  hit 
contains  already  integrated  islands,  the  builder 
need only insert the non integrated islands. 

Partial cache hits greatly increase the performance 
of the cache with 52% of cache requests providing 
geometry that contains between 90% and 99% of 
the islands requested already integrated.

Results 

Our results (see Figure 2) show that deactivation 
and  integration  can  yield  substantial  frame-rate 
increases in the ray-tracer as a result of lowering 
ray-transformation  overheads  and  the  cost  of 
building  the  top-level  data  structure  over  the 
dynamic objects.

Figure 1 : Fairy Forest. Two high polygon dynamic  
characters (a fairy and a dragon fly) move through  
a mostly static scene.

Figure 2 : An experiment with the deactivation and 
reactivation of  8000 objects in the Sponza Atrium 
scene. By integrating idle objects frame-rate 
improves substantially.
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