

 Real Time Ray Tracing for
Physically Simulated Scenes

Colin Fowler, Steven Collins and Michael Manzke,
GV2 Group, School of Computer Science & Statistics,

Trinity College Dublin
Introduction

The physics engine has become an ubiquitous component of graphics simulations in recent years. As computing object collisions is expensive, physics engines
employ a range of techniques to alleviate these costs. Similarly, ray-tracing is computationally expensive and has been subject to much research aiming to
increase its speed to make it viable in real-time simulation. Currently, there is no interaction between the ray-tracer and the physics engine. We take an
aggregate approach, treating the system as a whole and investigate areas where the physics engine can provide information to accelerate the ray-tracer.

The physics engine has knowledge of the state of all objects in the simulation in terms of location, velocity and acceleration. We propose that such information
will accelerate the ray-tracer which operates on the same objects.

Sleeping

Sleeping is a physics engine acceleration technique
that clusters spatially coherent physics objects into
groups known as "islands". When the linear and
angular velocities of all objects in an island have
fallen below a threshold, it is marked as sleeping. It
is no longer necessary to check these objects
against any other sleeping object for collision or
perform other calculations on them such as
applying gravitational forces. Sleeping dynamic
objects therefore act like static objects in this state.
If an active object enters the sleeping island's
AABB, the islands is reactivated for more low-level,
higher precision collision detection. Relieving the
engine of such calculations can greatly decrease
the computational overhead of a physics
simulation.

Integration

In a simulation with multiple copies of the same
rigid body, instancing may be used in order to
reduce memory overhead. Although this greatly
improves ray-tracer speed, there is still overhead in
building the top-level BVH and transforming the
rays. In typical physics simulation involving gravity
and friction, moving objects naturally tend to come
to rest. Without constant energy injection, all
initially moving objects will eventually come to a
stop. As previously noted, such rest states offer an
opportunity for acceleration in the physics engine
through sleeping. A similar technique, which we call
"integration", can be applied in the same scenarios
to accelerate the renderer. As static objects are
fixed, their local coordinate system can be set to
match the world coordinate system. This means
that no ray transformations are necessary when
intersecting them. Dynamic objects that have come
to rest may be thought of as a special case. Instead
of transforming each ray that potentially intersects
these objects, we transform the now resting
object's primitives into the world coordinate system
and then add this geometry to the static geometry.
This has two effects:

• Reducing the number of primitives in the top-
level BVH, therefore lowering top-level
acceleration data structure (ADS) build time
and the time spent in the top-level ADS.

• Reducing the number of ray transformations
required.

When a previously integrated object is moved, the
current static ADS becomes invalid. We can switch
back to the original static ADS and re-add the
previously integrated objects back into the dynamic
hierarchy to regain a valid state. Objects still in a
sleeping state may then be integrated again. If the
original data structures are still stored in memory,
the performance cost of switching or "reactivation"
is very small. Integration, however, has a cost as it
requires an ADS build. In order for integration to be
beneficial, the cycles spent performing the
integration build must at least be recouped by the
ray-tracer before a reactivation occurs. In a
dynamic system with many objects moving,
deactivation and reactivation events may follow
closely.

Deciding to Integrate

An island should be integrated when C i < tn, where
Ci is the ADS build cost for integration and tn is the
gain achieved by integration. Ci is not precisely
known but can be approximated easily based on
previous ADS builder performance with known
primitive input counts. tn may be costly to calculate
or completely unpredictable due to user input. It
can therefore be approximated based on several
previous integration/reactivation events. In order to
increase the accuracy of tn, we track events where
integration is precluded from happening by our
current heuristic values and the costs for
integration had it occurred. This allows tn to
converge more rapidly.

Reducing Ci presents more opportunities for
integration and therefore better renderer
performance. We take advantage of our pre-built
static geometry to speed up the insertion of
deactivated objects into the ADS. A from-scratch
rebuild of a tree-based ADS using an O(nlog n)
builder has a running time of O((k+n)log(k+n))
where n is the number of triangles in the original
static scene and k is the number of triangles in the
complete set of deactivated objects.

By using the static geometry's ADS as a starting
point, we reduce this operation to O(k log(k+n)).
We perform k insertions into the tree, each insert
taking O(log(k + n)) time.

When compared to full rebuilds in practice,
insertion yields similar ray-tracing speeds although
building several orders of magnitude faster.

Geometry Caching

If an island that was previously integrated
reactivates, we cannot use the current static
scenery ADS any longer as it contains the now-
moving objects. We may switch back to the original
pristine scenery. However, it possible that the
world-state is now similar to a previous
configuration where some or all of the still sleeping

islands were sleeping. To exploit this, we introduce
geometry caching.

The cache contains snapshots of the static scene
geometry taken before each new island integration.
Each snapshot is also marked with the islands that
have been integrated into the snapshot. Initially the
cache contains only the pristine static geometry.
This is marked as containing no integrated islands
and is the "worst case" fallback position.

When an island has gone to sleep, we first save our
current static geometry as an object in the cache,
marked with the list of islands integrated. We then
integrate the new sleeping island into the static
geometry. If a previously sleeping island wakes up,
we scan the cache and remove any cache objects
marked as containing that island as these are now
invalidated.

When a static ADS is added to the cache, we also
store in the cache entry a list of the islands
integrated into that ADS. The ADS builder requests
from the cache an ADS with a list of the islands it
needs to integrate. If a cache entry is found that
contains all of the requested islands already
integrated, this means that the builder has no
further work to do. We refer to this as a full cache
hit. If the cache contains an entry with only a
subset of the requested islands integrated, we refer
to this as a partial cache hit. As this partial hit
contains already integrated islands, the builder
need only insert the non integrated islands.

Partial cache hits greatly increase the performance
of the cache with 52% of cache requests providing
geometry that contains between 90% and 99% of
the islands requested already integrated.

Results

Our results (see Figure 2) show that deactivation
and integration can yield substantial frame-rate
increases in the ray-tracer as a result of lowering
ray-transformation overheads and the cost of
building the top-level data structure over the
dynamic objects.

Figure 1 : Fairy Forest. Two high polygon dynamic
characters (a fairy and a dragon fly) move through
a mostly static scene.

Figure 2 : An experiment with the deactivation and
reactivation of 8000 objects in the Sponza Atrium
scene. By integrating idle objects frame-rate
improves substantially.

3

4

5

6

7

8

9

Id le In corporation

Speedups in FPS

With Inc orporation

Without

Time

F
ra

m
e

s
 P

e
r

s
e

c
o

n
d

