
Stream
Multiprocessor

Interconnection Network

Thread Execution Manager

Texture
Processor
Cluster

Global Memory

GPU

SP SP

SP SP

SP SP

SP SP

SFUSFU

Shared
Memory

C cache

I cache
MT Issue

Binned SAH Kd-Tree Construction on a GPU
Piotr Danilewski 1, Stefan Popov 1, Philipp Slusallek 1,2,3

UNIVERSITY OF SAARLAND

 1Chair of Computer Graphics
2DFKI

3Intel Visual Computing Institute

Results

I. Georgiev, P. Slusallek: RTFact: Generic Concepts for Flexible and High Performance Ray Tracing, Eurographics Symposium on Interactive Ray Tracing, 2008
B. Choi, R. Komuravelli, V. Lu, H. Sung, R. Bocchino, S. Adve, J. Hart: Parallel SAH k-D Tree Construction, High Performance Graphics 2010
Q. Hou, X. Sun, K. Zhou, C. Lauterbach, D. Manocha, B. Guo: Memory-Scalable GPU Spatial Hierarchy Construction, 2009
S. Popov, J. Gunther, H.-P. Seidel, P. Slusallek: Experiences with streaming construction of SAH KD-trees, Symposium on Interactive Ray Tracing, 2006
This work was supported by International Max Planck Research School for Computer Science and Saarland University

In ray tracing, kd-trees are often regarded 
as the best acceleration structures, yet 
are too slow to build to be used for
dynamic scenes.
We aim to achieve real-
time construction times by 
implementing a highly parallel 
algorithm on a GPU.

Unlike previous work, 
our parallel algorithm 
preserves the quality of 
the tree by adopting 
the SAH at all stages 
of the construction.

Introduction

Program stages

We are using approximative binned SAH. To count the 
number of primitives in each bin, every thread block 
works independently on a portion of a node, and only 
one synchronisation at the end is needed to sum the 
partial results. Relocation of triangles to the children is 
synchronised between blocks using atomic operations.

We are still using binned SAH, with each thread block 
handling a node exclusively. Binning is performed in 
shared memory using atomic operations, but multiple 
counters are used to avoid conflicts from the same warp.
Destination addresses for relocation of triangles are 
computed using parallel prefix sum.

Each block handles several nodes at a time, each thread 
working on one of the triangles. We use a simple parallel 
implementation of an exact SAH algorithm.
To compute destination addresses for triangle relocation, a 
parallel segmented sum algorithm is adopted.

Previous split

N
ew

 s
pl

it

Triangle intersection

High quality kd-tree builders need to tighten the bounding boxes 
around triangles which are intersected by the split plane.
Usually there are only few triangles to be split but precise clipping 
algorithms may noticeably slow down the whole construction.

In our approach, we initially ignore 
previous splits, significantly simplifying 
our task. Instead, we intersect whole 
triangle with the plane and compute the 
resulting bounding boxes.

Only later we intersect the 
boxes with the previous one.
In some cases the resulting 
boxes may be bigger than 
necessary but such situation 
is rare and does not degrade 
the kd-tree quality much.

Traverse and intersection cost parameters balance the tree con-
struction and its quality. In this setting we allow only minimal per-
formance drop of the RTFact raytracer compared to a full-quality 
SAH kd-tree.

The construction times were mesured using NVIDIA GTX 285 GPU.

As number of independent blocks running in 
parallel on a GPU is likely to increase in the 
future, parallel efficiency with this respect is an 
important measure of an algorithm.

Efficiency is defined as a weighted ratio of run 
time on one multiprocessor and x multiprocessors.
Our implementation achieves unprecedented 
scalability both on GPU and CPU.

Effx= tx
.x
t1

Fairy Forest
38ms

174K triangles

Eff8=0.80
Eff30=0.52

Conference
69ms

283K triangles

Eff8=0.86
Eff30=0.60

contact: danilewski@cs.uni-saarland.de


