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Introduction – Parallelism in Graphics 
Hardware 
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•  Increased programmability on GPUs allows different 
programmable pipelines on the GPU. 

•  We want to explore how pipelines can be efficiently 
mapped onto the GPU. 

  What if your pipeline has irregular stages ? 

  How should data between pipeline stages be stored ? 

  What about load balancing across all parallel units ? 

  What if your pipeline is more geared towards task 
parallelism rather than data parallelism? 

Motivation – Programmable Pipelines 
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Our paper addresses these Issues! 



•  Imagine that these 
pipeline stages were 
actually bricks.   

•  Then we are providing 
the mortar between the 
bricks. 

In Other Words… 
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•  Alternative pipelines on the GPU: 
•  Renderants [Zhou et al. 2009] 

•  Freepipe [Liu et al. 2009] 

•  Optix [NVIDIA 2010] 

•  Distributed Queuing on the GPU: 

•  GPU Dynamic Load Balancing [Cederman et al. 2008] 

•  Multi-CPU work 

•  Reyes on the GPU: 

•  Subdivision [Patney et al. 2008] 

•  Diagsplit [Fisher et al. 2009] 

•  Micropolygon Rasterization [Fatahalian et al. 2009] 

Related Work 
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Ingredients for Mortar 
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What is the proper 
granularity for tasks? 

How many threads to 
launch? 

How to avoid global 
synchronizations? 
How to distribute 

tasks evenly? 

Warp Size  
Work Granularity  

Uberkernels 

Persistent Threads 

Task Donation  

Questions that we 
need to address: 



•  Problem: We want to emulate task level parallelism on 
the GPU without loss in efficiency.   

•  Solution: we choose block sizes of 32 threads / block. 
•  Removes messy synchronization barriers. 

•  Can view each block as a MIMD thread. We call these blocks 
processors 

Warp Size Work Granularity 
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•  Problem: Want to eliminate global kernel barriers for 
better processor utilization 

•  Uberkernels pack multiple execution routes into one 
kernel.   

Uberkernel Processor Utilization 
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Life of a Thread: 

Persistent Thread Scheduler Emulation 
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Life of a Persistent Thread: 

How do we know when to stop? 
When there is no more work left 

•  Problem: If input is irregular?  How many threads do we 
launch? 

•  Launch enough to fill the GPU, and keep them alive so 
they keep fetching work. 



•  Problem: We need to ensure that our processors are 
constantly working and not idle.   

•  Solution: Design a software memory management 
system. 

•  How each processor fetches work is based on our 
queuing strategy. 

•  We look at 4 strategies: 
•  Block Queues 

•  Distributed Queues 

•  Task Stealing 

•  Task Donation 

Memory Management System 
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•  To obtain exclusive access to a queue each queue has 
a lock. 

•  Current implementation uses spin locks and are very 
slow on GPUs.   

•  We want to use as few locks as possible. 

A Word About Locks 
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while (atomicCAS(lock, 0,1) ==1); 



•  1 dequeue for all processors.  Read from one end write 
back to the other. 

Block Queuing 
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•  Each processor has its own dequeue (called a bin) and 
it reads and writes to it. 

Distributed Queuing 
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This processor  
finished all its 

work  and steals 
from neighboring 

processor 

•  Using the distributed queuing scheme, but now 
processors can steal work from another bin. 

Task Stealing 
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•  When a bin is full, processor can give work to someone 
else. 

Task Donation 
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•  Main measure to compare: 
•  How many iterations the processor is idle due to lock 

contention or waiting for other processors to finish. 

•  We use a synthetic work generator to precisely control 
the conditions. 

Evaluating the Queues 
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Average Idle Iterations Per Processor 

16 

Idle Iterations 

25000 

200 

Block  
Queue 

Dist. 
Queue 

Task 
Stealing 

Task 
Donation 

Lock 
Contention 

Idle Waiting 

About the 
same performance 

About the 
same performance 



How it All Fits Together 
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Our Version 
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Our Version 
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We spawn 32 threads per 
thread group / block in our 

grid.  These are our 
processors. 



Our Version 
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Our Version 

21 

Spawn  

Fetch Data 

Write Output 

Death 

Task  
Donation 
Memory  
System 

Uberkernels 

Pe
rs

is
te

nt
 T

hr
ea

ds
 

Uberkernel decies 
how to process the 
current work unit 



Our Version 
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Our Version 
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APPLICATION: REYES 
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Pipeline Overview 
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Pipeline Overview 
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•  We combine the patch split and dice stage into one 
kernel. 

•  Bins are loaded with initial patches.  
•  1 processor works on 1 patch at a time. Processor can 

write back split patches into bins.   
•  Output is a buffer of micropolygons 

Split and Dice  
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•  32 Threads on 16 CPs – 16 threads each work in u and v 
•  Calculate u and v thresholds, and then go to uberkernel 

branch decision: 
•  Branch 1 splits the patch again 

•  Branch 2 dices the patch into micropolygons  

Split and Dice 
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•  Stamp out samples for each micropolygon.  1 
processor per micropolygon patch. 

•  Since only output is irregular, use a block queue. 
•  Write out to a sample buffer. 

Sampling 
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•  Stamp out samples for each micropolygon.  1 
processor per micropolygon patch. 

•  Since only output is irregular, use a block queue. 
•  Write out to a sample buffer. 

Sampling 
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Q: 
Why are you using a block queue?  
Didn’t you just show block queues 
have high contention when 
processors write back into it? 

A: 
True.  However, we’re not writing into 
this queue!  We’re just reading from 
it, so there is no writeback idle time. 



Smooth Surfaces, High Detail 

16 samples per pixel 
>15 frames per second on GeForce GTX280 



•  What other (and better) abstractions are there for 
programmable pipelines? 

•  How is future GPU design going to affect software 
schedulers? 

•  For Reyes: What is the right model to do GPU real time 
micropolygon shading? 

What’s Next 
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