
Task Management for Irregular-
Parallel Workloads on the GPU

Stanley Tzeng, Anjul Patney, and John D. Owens
University of California, Davis

Introduction – Parallelism in Graphics
Hardware

1

Input Queue

Output Queue

Process

Input Queue

Output Queue

Process

Regular
Workloads

Irregular
Workloads

Good
matching of
input size to
output size

Vertex, Fragment
Processor, etc.

Geometry Processor,
Recursion

Unprocessed Work Unit
Processed Work Unit

Hard to
estimate

output given
input

•  Increased programmability on GPUs allows different
programmable pipelines on the GPU.

•  We want to explore how pipelines can be efficiently
mapped onto the GPU.

  What if your pipeline has irregular stages ?

  How should data between pipeline stages be stored ?

  What about load balancing across all parallel units ?

  What if your pipeline is more geared towards task
parallelism rather than data parallelism?

Motivation – Programmable Pipelines

2

Our paper addresses these Issues!

•  Imagine that these
pipeline stages were
actually bricks.

•  Then we are providing
the mortar between the
bricks.

In Other Words…

3

Pipeline
Stages

Us

•  Alternative pipelines on the GPU:
•  Renderants [Zhou et al. 2009]

•  Freepipe [Liu et al. 2009]

•  Optix [NVIDIA 2010]

•  Distributed Queuing on the GPU:

•  GPU Dynamic Load Balancing [Cederman et al. 2008]

•  Multi-CPU work

•  Reyes on the GPU:

•  Subdivision [Patney et al. 2008]

•  Diagsplit [Fisher et al. 2009]

•  Micropolygon Rasterization [Fatahalian et al. 2009]

Related Work

4

Ingredients for Mortar

5

What is the proper
granularity for tasks?

How many threads to
launch?

How to avoid global
synchronizations?
How to distribute

tasks evenly?

Warp Size
Work Granularity

Uberkernels

Persistent Threads

Task Donation

Questions that we
need to address:

•  Problem: We want to emulate task level parallelism on
the GPU without loss in efficiency.

•  Solution: we choose block sizes of 32 threads / block.
•  Removes messy synchronization barriers.

•  Can view each block as a MIMD thread. We call these blocks
processors

Warp Size Work Granularity

6

Physical
Processor

P P P

Physical
Processor

Physical
Processor

P P P P P P

•  Problem: Want to eliminate global kernel barriers for
better processor utilization

•  Uberkernels pack multiple execution routes into one
kernel.

Uberkernel Processor Utilization

7

Pipeline Stage 1

Pipeline Stage 2

Data Flow

Uberkernel

Stage 1

Stage 2

Data Flow

Life of a Thread:

Persistent Thread Scheduler Emulation

8

Spawn Fetch
Data

Process
Data

Write
Output Death

Life of a Persistent Thread:

How do we know when to stop?
When there is no more work left

•  Problem: If input is irregular? How many threads do we
launch?

•  Launch enough to fill the GPU, and keep them alive so
they keep fetching work.

•  Problem: We need to ensure that our processors are
constantly working and not idle.

•  Solution: Design a software memory management
system.

•  How each processor fetches work is based on our
queuing strategy.

•  We look at 4 strategies:
•  Block Queues

•  Distributed Queues

•  Task Stealing

•  Task Donation

Memory Management System

9

•  To obtain exclusive access to a queue each queue has
a lock.

•  Current implementation uses spin locks and are very
slow on GPUs.

•  We want to use as few locks as possible.

A Word About Locks

10

while (atomicCAS(lock, 0,1) ==1);

•  1 dequeue for all processors. Read from one end write
back to the other.

Block Queuing

11

P1 P2 P3 P4

Until the
last element,
fetching work

from the queue
requires no

lock

Writing back to
the queue is
serial. Each

processor obtains
lock before

writing.

Read
Write

Excellent Load Balancing

Horrible Lock Contention

•  Each processor has its own dequeue (called a bin) and
it reads and writes to it.

Distributed Queuing

12

P1 P2 P3 P4

This processor
finished all its
work and can

only idle

Eliminates Locks

Idle Processors

This processor
finished all its

work and steals
from neighboring

processor

•  Using the distributed queuing scheme, but now
processors can steal work from another bin.

Task Stealing

13

P1 P2 P3 P4

Very Low Idle

Big Bin Sizes

•  When a bin is full, processor can give work to someone
else.

Task Donation

14

This processor ‘s bin
is full and donates

its work to someone
else’s bin

P1 P2 P3 P4

Smaller memory usage

More complicated

•  Main measure to compare:
•  How many iterations the processor is idle due to lock

contention or waiting for other processors to finish.

•  We use a synthetic work generator to precisely control
the conditions.

Evaluating the Queues

15

Average Idle Iterations Per Processor

16

Idle Iterations

25000

200

Block
Queue

Dist.
Queue

Task
Stealing

Task
Donation

Lock
Contention

Idle Waiting

About the
same performance

About the
same performance

How it All Fits Together

17

Spawn

Fetch Data

Process Data

Write Output

Death

Global
Memory

Our Version

18

Spawn

Fetch Data

Write Output

Death

Task
Donation
Memory
System

Uberkernels

Pe
rs

is
te

nt
 T

hr
ea

ds

Our Version

19

Spawn

Fetch Data

Write Output

Death

Task
Donation
Memory
System

Uberkernels

Pe
rs

is
te

nt
 T

hr
ea

ds

We spawn 32 threads per
thread group / block in our

grid. These are our
processors.

Our Version

20

Spawn

Fetch Data

Write Output

Death

Task
Donation
Memory
System

Uberkernels

Pe
rs

is
te

nt
 T

hr
ea

ds

Each processor
grabs work to

process.

Our Version

21

Spawn

Fetch Data

Write Output

Death

Task
Donation
Memory
System

Uberkernels

Pe
rs

is
te

nt
 T

hr
ea

ds

Uberkernel decies
how to process the
current work unit

Our Version

22

Spawn

Fetch Data

Write Output

Death

Task
Donation
Memory
System

Uberkernels

Pe
rs

is
te

nt
 T

hr
ea

ds

Once work is
processed, thread
execution returns
to fetching more

work

Our Version

23

Spawn

Fetch Data

Write Output

Death

Task
Donation
Memory
System

Uberkernels

Pe
rs

is
te

nt
 T

hr
ea

ds

When there is no
work left in the

queue, the threads
retire

APPLICATION: REYES

24

Pipeline Overview

Start with smooth surfaces
Obtain micropolygons

Subdivision /
Tessellation

Shading

Rasterization / Sampling

Composition and
Filtering

Scene

Image

Pipeline Overview

Shade micropolygons Subdivision /
Tessellation

Shading

Rasterization / Sampling

Composition and
Filtering

Scene

Image

Pipeline Overview

Map micropolygons to
screen space

Subdivision /
Tessellation

Shading

Rasterization / Sampling

Composition and
Filtering

Scene

Image

Pipeline Overview

Reconstruct pixels from
obtained samples

Subdivision /
Tessellation

Shading

Rasterization / Sampling

Composition and
Filtering

Scene

Image

Pipeline Overview

Subdivision /
Tessellation

Shading

Rasterization / Sampling

Scene

Image

Composition and
Filtering

Irregular Input and Output

Regular Input and Output

Regular Input
Irregular Output

Irregular Input
Regular Output

•  We combine the patch split and dice stage into one
kernel.

•  Bins are loaded with initial patches.
•  1 processor works on 1 patch at a time. Processor can

write back split patches into bins.
•  Output is a buffer of micropolygons

Split and Dice

30

•  32 Threads on 16 CPs – 16 threads each work in u and v
•  Calculate u and v thresholds, and then go to uberkernel

branch decision:
•  Branch 1 splits the patch again

•  Branch 2 dices the patch into micropolygons

Split and Dice

31

Bin 0

Bin 0

µpoly
buffer

•  Stamp out samples for each micropolygon. 1
processor per micropolygon patch.

•  Since only output is irregular, use a block queue.
•  Write out to a sample buffer.

Sampling

32

P1 P2 P3 P4

0 15000

Read
&

Stamp

Atomic Add

Writeout

µpolygons
queue

processor

counter

Global Memory

•  Stamp out samples for each micropolygon. 1
processor per micropolygon patch.

•  Since only output is irregular, use a block queue.
•  Write out to a sample buffer.

Sampling

33

P1 P2 P3 P4

0 15000

Read
&

Stamp

Atomic Add

Writeout

µpolygons
queue

processor

counter

Global Memory

Q:
Why are you using a block queue?
Didn’t you just show block queues
have high contention when
processors write back into it?

A:
True. However, we’re not writing into
this queue! We’re just reading from
it, so there is no writeback idle time.

Smooth Surfaces, High Detail

16 samples per pixel
>15 frames per second on GeForce GTX280

•  What other (and better) abstractions are there for
programmable pipelines?

•  How is future GPU design going to affect software
schedulers?

•  For Reyes: What is the right model to do GPU real time
micropolygon shading?

What’s Next

35

•  Matt Pharr, Aaron Lefohn, and Mike Houston
•  Jonathan Ragan-Kelley
•  Shubho Sengupta
•  Bay Raitt and Headus Inc. for models
•  National Science Foundation
•  SciDAC
•  NVIDIA Graduate Fellowship

Acknowledgments

36

Thank You

