Future graphics in games

Anton Kaplanyan
Lead researcher

Cevat Yerli Crytek CEO

Agenda

- The history: Crytek GmbH
 - Current graphics technologies
 - Stereoscopic rendering
 - Current graphics challenges
- Graphics of the future
 - Graphics technologies of the future
 - Server-side rendering
 - Hardware challenges
 - Perception-driven graphics

The Past - Part 1

- March 2001 till March 2004
 - Development of Far Cry
 - Development of CryEngine 1
- Approach: A naïve, but successful push for contrasts, by insisting on opposites to industry. size, quality, detail, brightness
 - First right investment into tools WYSIWYPlay

Past - Part 1: CryEngine 1

- Polybump (2001)
 - NormalMap extraction from High-Res Geometry
- First "Per Pixel Shading" & HDR Engine
 - For Lights, Shadows & Materials
 - High Dynamic Range
- Long view distances & detailed vistas
 - Terrain featured unique base-texturing
- High quality close ranges
- High fidelity physics & Al
- It took 3 years, avg 20 R&D Engineers

CryENGINE 2

The Past – Part 2 – CryENGINE 2

- April 2004 till November 2007
 - Development of Crysis
 - Development of CryEngine 2
- Approach: Photorealism meets interactivity!
 - Typically mutual exclusive directions
 - Realtime productivity with WYSIWYPlay
 - Extremely challenging, but successful ©

CryEngine 2 - Way to Photorealism

The Past - Part 2: CryEngine 2

- CGI Quality Lighting & Shading
- Life-like characters
- Scaleable architecture in
 - Both content and pipeline
 - Technologies and assets allow various configurations to be maxed out!
 - Crysis shipped Nov 2007, works on PCs of 2004 till today and for future... ©

The Present - CryEngine 3

- CryEngine 3 is build with next-gen in mind
- Scales through many-core support
- Performs on PC, Xbox360, PS3, DX11
- Built by avg. 25 people over 3 years

CryENGINE 3 architecture

- CryENGINE 2 successor, but now we do
 - Deferred lighting (aka Light Prepass)
 - Lighting in linear space
 - Indirect lighting
 - Coordinated dynamic and precomputed lighting
 - Advanced color correction (artists-driven color charts)
 - Streaming rendering assets (geometry, textures, animation)
 - Run on both consoles (Xbox 360 and Playstation 3)
 - Compressed and minimized bandwidth and memory requirements

Why deferred lighting

Deferred lighting

- Good decomposition of lighting
 - No lighting-geometry interdependency
- Cons:
 - Limited material variations
 - Higher memory and bandwidth requirements
 - Shading problems
 - 2x2 tiles for mip computation fail for any kind of deferred texturing (projective light textures, decals etc.)

Deferred pipelines bandwidth

Feature

How to design for the future?

Facts

- Fixed Resolution for Gaming till 2012
- HD 1920 x 1080 @ 60 fps
 - Stereoscopic 3D experience: 30 fps per eye
- Limited by current consoles hardware
- Risk of "Uncanny Valley" for content
 - · Perception-driven approaches!
- Till 2012 majority of games must use artistic style, physics and Al to differentiate!
 - What's the current artistic style? Desaturate colors?

Graphics architecture

- Breakthroughs in rendering architecture are not easy
 - Proved multiple times by hardware vendors
 - Especially multiple recent tries with software renderer
 - Trails along with a huge infrastructure
 - Outcome of a many-years development experience
- Graphics architecture will be much more divergent
 - Do we really want to write our own software renderer?
 - Coming back to old good techniques like voxels, micropolygons etc.

How to design for the future?

- Alternatives that will brand some games in future:
 - Point Based Rendering
 - Ray Tracing
 - Rasterization, as usual
 - Micropolygons
- Data representations:
 - Sparse Voxel Octrees (data structure)
 - Sparse Surfel Octrees

Graphics in Future

- Sparse Voxel Octrees (Datastructure)
 - Pros
 - Data structure is future proof for alternative rendering
 - Very good fit for unique geometry & texture
 Geometry and texture budgets become less relevant
 - Artistic freedom becomes true
 - Naturally fits to automatic LOD schemes

Cons

- Neither infrastructure nor h/w
- Slightly memory intensive
- Fits nicely to Ray-tracing, but is still too slow

Sparse Voxel Octree Usage in CryEngine 3

- We already use it in production!!
 - Used during level export to bake geometry and textures
 - Stored in a sparse octree of triangulated sectors
 - Very easy to manage and stream geometry and textures
 - No GPU computations required (despite virtual texturing)
 - Automatic correct LOD construction
 - Adaptive geometric and texture details
 - Depending on the gameplay
- Huge space on disk for each level!
 - Use aggressive texture compression
 - Bake wisely, not the whole world

Sparse Voxel Octree Usage in CryEngine 3

Opportunities in Future

- Short-term user impact opportunities till 2012
 - The delta in visual opportunities is limited, BUT...
 - for the next 3 Years: Huge gains are possible in Physics, Al and Simulation of Special Effects
 - → Focus around that knowledge can lead to very different designs
- Mid-erm 2013+ creative opportunities
 - Future console generations
 - → New Rendering Methods will become available
 - → The renaissance of graphics will arrive
 - Allows new visual development directions that will rival full CGI feature films qualty
 - Action point: Link yourself to console cycle

PERCEPTION-DRIVEN GRAPHICS

Perception-driven graphics

- PCF-based soft shadows
- Stochastic OIT
- Image-based reflections
- Ambient Occlusion (SSAO, prebaked etc.)
- Most posteffect (DoF, motion blur approximations)
- Light propagation volumes
- Many stochastic algorithms
- most of assumptions in real-time graphics
- All that works because of the limited human perception

Real-time graphics *is* perception-driven

- Human's eye has some specialities
- ~350 Mpixel spatial resolution
 - Quite hard to trick it in this area
- ~24 Hz temporal resolution
 - Very low, a room for techniques
 - We don't notice the flickering @ > 40Hz
- We don't create an image for another machine, our target customer is a human

Under-sampling / super-sampling

- Spatial
 - Undersampling
 - Inferred shading
 - Depth of field
 - · Decoupled sampling
- Temporal
 - Temporal anti-aliasing
 - Motion blur
- Mixed
 - Spatio-temporal anti-aliasing

Hybrid rendering

- There is no panacea rendering pipeline
 - Even REYES is not used in its original form for movies
- Hybrid pipeline is possible on the current gen GPUs
 - Will be even more topical for new generation of consoles
- Usually combines everything that matches and helps
 - Ray-tracing for reflections and shadows
 - Could be triangles / point sets / voxel structures / etc.
 - Voxels for better scene representation (partially)
 - Screen-space contact effects (e.g. reflections)
 - Much much more (a lot of ideas)

Recent trend

STEREOSCOPIC RENDERING

3D stereoscopic rendering

- Technique was there for a long time
 - Becomes popular due to technologies, in games too
 - No new concepts, similar to photography art though
 - One golden rule: <u>don't make the audience tired</u>
- Crysis 2 already has a 1st class 3D Stereo support
 - Use the depth histogram to determine the interaxial distance:

Supported stereo modes in CryENGINE 3

- Stereo rendering modes
 - Brute-force stereo rendering
 - Central eye frame with reprojection
 - Experimental stochastic rendering from one of eyes
- Stereo output modes
 - Anaglyph (color separation)
 - Interlaced
 - Horizontal joint images
 - Vertical joint images
 - Two monitors

Stereo video

SERVER-SIDE RENDERING

Server-side rendering

- 4G networks have a good ground for that
 - Low ping a strong requirement for real-time games
 - Will be widely deployed in 5-7 years
- Compression of synthesized video
 - Temporally decompose the video details
 - Use perception-based importance
 - Salience maps + user-side eye-tracking
- Need to amortize cloud-rendering cost per user:

Cost

inear trend

Amortized trend

Number of users

Example of perception-driven graphics

Image

Per-object importance map

Saliency map

Courtesy of Matthias Bernhard TU Vienna

- Example of perception-driven rendering
 - They use eye-tracking system to build importance map
 Can be provided by the game itself
- •Adaptive video compression is possible along with adaptive rendering

CURRENT PROBLEMS OF HARDWARE ARCHITECTURE

Highly parallel scheduling

- Small synthetic test (simulate GPU behavior)
 - 512 cores (could be interpreted as slots of shared cache too)
 - 32k small identical tasks to execute
 - Each item requires 1 clock on one core (so synthetic)
 - Within a range of 256 to 2048 threads
 - Scheduling overhead is taken into account in total time
 - Task feeding
 - Context switches
 - Overhead weight is not important

Highly parallel scheduling

Highly parallel scheduling

- Another test
 - Real GPU!
 - Screen-space effect (SSAO)
 - Bandwidth-intensive pixel shader
 - Each item requires 1 clock on one core (so synthetic)
 - Within a range of 5 to 40 threads
 - Cache pollution causes a peak right after the saturation state
 - The time reaches the saturation performance with more threads asymptotically

Highly parallel scheduling

Highly parallel scheduling

- Scheduling overhead can be a problem
 - Parallel scalability
 - With homogenous tasks it comes to maximum at saturation
 - What about heterogeneous workload?
 - The existence of the minimum depends on the performance impact of scheduling
 - We need to reduce it
 - Configurable hardware scheduler!
 - GRAMPS-like architectures are possible with it
 - Ray tracing becomes much faster and SoL with bandwidth bottleneck

Atomics

- Atomics came from CPU hardware
 - Used to build synchronization primitives in Oses
 - Works only on integers
 - Provides result of operation
- We need absolutely <u>different</u> atomics!!!
 - We use it mostly for gather/scatter operations
 - MUST work on floating point numbers instead!
 - In most cases no result needed
 - Improve atomics w/o read-back (fire-and-forget concept)
 - Operation should be done on memory controller / smart memory side
 - We need order of magnitude faster performance for graphics atomics

Future performance

- PS3 and Xbox 360 are in-order
 - "by optimizing for consoles we also speed up PC"
 - not really, we invest only into current consoles
- What's the next generation of consoles?
 - Larrabee 2 and Fermi ARE in-order
 - Should we rewrite the architecture again?
- Death of Out-of-Order architecture?
 - No way! Game platform will remain heterogeneous
 - Related to different game subsystems (game code vs rendering)
- Many new parallel languages and paradigms
 - OpenCL, GRAMPS, C++0x, OpenMP, TBB, ConcRT, Ct
- Backwards scalability is a challenge

Future performance

- Mostly graphics, as it's scalable without pain
 - Doesn't affect game-play
- Assets processing
 - Texture compression becomes an issue as well
 - Both decompression AND <u>compression</u> complexity should be respected
 - Shaders development
 - Compilation is too slow and not flexible
 - Still not solved by DX11 DSL
 - Getting worse with ComputeShaders
 - Debugging / profiling is still not there for compute shaders
 - Developing a huge system might become a hell

- Quantization / color depth?
 - BC6/7 delivers, but DX11-hw only

DXT1-compressed

Original

Challenges of Future

Technology challenges

- Switching to a scaleable codebase
 - Think of parallelism & async jobs
 - Multithreading, scheduling
 - Larger codebases, multiple platforms & APIs

Production challenges

- Cost of assets increase by ~50% annually
 - Content, besides quality increases, gets more & more "interactive"
 - Think to improve Tools, Pipelines & Bottlenecks to counter-effect, automate
 Source Back-Ends → Resource Compilers
 - The better the tools, the cheaper and/or the better your output

Efficiency

- We spend too much of computational power per frame!
 - Precision is mostly redundant
 - No need to compute colors in 32-bits floating points
 - Even h/w rasterizers was 12-bits of fixed precision in good old times
 - Humans do not notice the most of the picture in real-time graphics
 - It is a gameplay video rather than a still image
 - Neither we watch it like a movie, games are usually challenging
 - The importance of a particular technology is perception-driven
 How important are the fully accurate rather very glossy reflections
- Graphics hardware should challenge incoherent workloads
- What about <u>profit / development cost</u> ratio?
 - Seems like we already fall into uncanny valley in graphics technologies

Scopes

- Content costs will increase
 - If nothing changes → Tools must adapt
 - Smarter & automated pipelines & tools will provide better, faster & valid content data
 - Think procedural content creation
- 5y...gaming graphics will change,
 - but insignificantly in the next 3 years
- Today's technologies will drive the next 3 years in visual development. The look is still about creativity and using the given resource powers of today
- 5y...realtime gaming graphics will approach to current
 CGI offline rendering

Conclusion

- Real-time rendering pipeline renovation is around the corner
 - Hardware improvements are required
 - Evolution of current techniques for production real-time rendering
 - Prepare to new representations and rendering pipelines
 - Better infrastructure for parallel development
 - Tools and authoring pipelines needs modernization
 - Consider server-side rendering: could change the direction drastically
- Perception-driven real-time graphics is a technology driver
 - Avoid uncanny valley in graphics technologies

