
Spatial Splits in Bounding Volume
Hierarchies

Heiko Friedrich
Andreas Dietrich

NVIDIA Research

HIGH PERFORMANCE GRAPHICS 2009

Martin Stich

HIGH PERFORMANCE GRAPHICS 2009 2

BVHs for Ray Tracing

• Perform well on GPUs

• Low memory footprint

• Simple+fast construction

• Fast refitting in animations

HIGH PERFORMANCE GRAPHICS 2009 3

BVHs for Ray Tracing

• Perform well on GPUs

• Low memory footprint

• Simple+fast construction

• Fast refitting in animations

• Don’t adapt well to non-uniformly tessellated scenes
(no problem for kd-trees or other spatial hierarchies)

HIGH PERFORMANCE GRAPHICS 2009 4

The Problem: Node Overlap

• Minimum leaf bounding volume is that of primitives

• Nodes overlap, particularly badly with large primitives

• Overlap means hierarchy doesn’t save us any work

HIGH PERFORMANCE GRAPHICS 2009 5

The Problem: Node Overlap

• Minimum leaf bounding volume is that of primitives

• Nodes overlap, particularly badly with large primitives

• Overlap means hierarchy doesn’t save us any work

HIGH PERFORMANCE GRAPHICS 2009 6

The Problem: Node Overlap

• Minimum leaf bounding volume is that of primitives

• Nodes overlap, particularly badly with large primitives

• Overlap means hierarchy doesn’t save us any work

HIGH PERFORMANCE GRAPHICS 2009 7

The Problem: Node Overlap

• Minimum leaf bounding volume is that of primitives

• Nodes overlap, particularly badly with large primitives

• Overlap means hierarchy doesn’t save us any work

HIGH PERFORMANCE GRAPHICS 2009 8

The Problem: Node Overlap
• It happens in the “real world”

HIGH PERFORMANCE GRAPHICS 2009 9

Previous Methods

• Straightforward pre-tessellation
• Waste of memory
• Numerically difficult

• Presplit bounding boxes
• Early Split Clipping [Ernst & Greiner 07]
• Edge Volume Heuristic [Dammertz & Keller 08]
• Basic idea: pre-pass subdivides primitive AABBs

• BVH built on top of those

• Primitives may be referenced more than once (which is ok)

• Hard to get good !/$ with all above methods
• ! is often small, if anything

HIGH PERFORMANCE GRAPHICS 2009 10

Spatial Splits in BVHs

• No reason we can’t spatially split a BVH node:

• Object splitting “on demand” during build
• No longer a pre-pass
• Can splits objects only where we really need it

• Need for better splitting strategy

HIGH PERFORMANCE GRAPHICS 2009 11

The Split-BVH (SBVH)

• Use spatial splits during BVH build
• But only where we expect benefit

• Very simple algorithm:

SplitNode()

{

split1 = findBestObjectSplit() // BVH split as usual

split2 = findBestSpatialSplit() // like kd (almost)

if(split1.SAHcost <= split2.SAHcost)

PerformSplit(split1)

else

PerformSplit(split2)

}

HIGH PERFORMANCE GRAPHICS 2009 12

Finding Spatial Splits

• Very similar to split search for kd-trees

• A few subtle differences exist, though
• Because we store full AABBs, not just a plane
• More details in the paper

• Our implementation uses a binning approach
• Good tradeoff between speed and quality

HIGH PERFORMANCE GRAPHICS 2009 13

Finding Spatial Splits

• Binning: consider a set of equidistant split planes
• Finds split in linear time

• Adapt conventional binning to fit our needs
• Store an AABB in each bin (like BVH binning)
• Store entry/exit counters in each bin (like kd-tree binning)
• Fill the bins with clipped primitive AABBs (“chopped binning”)

HIGH PERFORMANCE GRAPHICS 2009 14

Finding Spatial Splits

• Done!
• That’s all we needed to implement findBestSpatialSplit()

• Use bins to find cheapest split

• Bin in all 3 dimensions

HIGH PERFORMANCE GRAPHICS 2009 15

Improving Spatial Splits
• Building a BVH, so no reason a split plane must be definite

• Allow some overlap even for spatial splits
• Results in “hybrid” between object and spatial split

• Unsplitting: Check if putting a split object only in one of
the children improves SAH cost

• Reduces overall SAH cost (but not dramatically)

HIGH PERFORMANCE GRAPHICS 2009 16

Restricting Spatial Splits

• SBVH is good at finding splits
• Hierarchies may become deeper than we want
• But low memory footprint was what we liked about BVHs!

• Spatial Splits are most effective at the top levels
• That’s where node overlap is biggest and hurts the most

• Solution: use only object splits in lower levels
• Need heuristic that decides whether attempting a

spatial split is worth it

HIGH PERFORMANCE GRAPHICS 2009 17

Restricting Spatial Splits

• Make spatial split attempts dependent on amount of
overlap from best object split:

• α is user-parameter in [0,1]
• 1 = regular BVH, 0 = always try spatial split
• Parameter is bounded and does not control splitting directly
• Well-behaved: we just use α = 10 all the time-5

HIGH PERFORMANCE GRAPHICS 2009 18

Restricting Spatial Splits

• Example: Conference room

HIGH PERFORMANCE GRAPHICS 2009 19

Results

• Measured number of datapoints across variety of scenes
• Total SAH cost
• Memory (references and nodes)
• Primitive intersections
• Traversal steps
• Ray casting performance

• Compared SBVH to regular BVH, ESC, and EVH
• ESC and EVH had same object duplication budget as SBVH
• SBVH consistently better
• See the paper for details

• Multiple viewpoints per scene
• Primary and AO rays

HIGH PERFORMANCE GRAPHICS 2009 20

Results
• Perf measured with our fastest kernels [Aila & Laine 09]

• Semi-artificial case (rotated Sponza): about 200%

HIGH PERFORMANCE GRAPHICS 2009 21

Conclusion
• SBVH: new BVH scheme for “difficult” scenes

• Doesn’t hurt if scene is not difficult

• Consistent improvement over previous methods

• Simple to implement
• Just add spatial split search to your BVH builder

• Practical
• We use it in OptiX

HIGH PERFORMANCE GRAPHICS 2009 22

Conclusion

• Limitations/Downsides
• Builds are slower than pure BVH
• Sacrificed some simplicity
• No more simple refitting

• Future work
• Parallel GPU builds
• In-place build in bounded memory
• Applications other than ray tracing

HIGH PERFORMANCE GRAPHICS 2009 23

Thank You!

mstich@nvidia.com

