Image Space Gathering

Austin Robison

Example Phenomena

- Soft Shadows
- Depth of Field
- Motion Blur
- Color Bleeding
- Subsurface Scattering
- **Glossy Reflection**

Plan of Attack

- Identify salient features of phenomenon
- Find cheap approximation for some or all of those features
- As hardware and techniques improve, find better approximations that capture more features

Glossy Reflection

Selected Previous Work

Reflection Occlusion [Landis 2002]

Percentage Closer Soft Shadows (PCSS) [Fernando 2005]

Courtesy of Industrial Light & Magic

See Paper for Additional Work

Variable Radius Blur - Spreading

Variable Radius Blur - Gathering

Cross Bilateral Filtering

Image Space Gathering

- Image space, post processing convolution with a two-pass signal dependent filter
 - General framework for blurring
 - Tailor our parameters to implement the desired phenomenon
- Filter integral can be computed many ways
 - We chose to point sample and MC integrate

Algorithm Pipeline

Normal

t_{refl}

Position

Reflection

Phase 1: the parameter search

Phase 2: the gather

Undersampling Artifacts

PCF (Screen Space)

Future Work

Add structure to filter kernel sample distribution

Approximate anisotropic BRDFs, shaped area lights, lens bokeh, etc.

Acknowledgements

- NVIDIA Research
- Randy Fernando and Louis Bavoil

Questions?

arobison@nvidia.com

http://www.nvidia.com

