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• Prior Art

– Problems, solutions, ideas

• Morphological Antialiasing ∈ image-based AA

– Input: image. Output: ‘better looking’ image

– Algorithm, features, limitations

• Demos during the talk (hopefully)



Leonardo da Vinci – Inventor of Antialiasing 

sfumato: painting 
technique 
“without lines or 
borders, in the 
manner of smoke 
or beyond the 
focus plane” 

Leonardo da Vinci – Inventor of Antialiasing 



Georges-Pierre Seurat’s La Parade, 1888 (from Wikipedia): 
“The tiny juxtaposed dots of multi-colored paint allow the 
viewer's eye to blend colors optically, rather than having the 
colors blended on the canvas or pre-blended as a material 
pigment.”

http://en.wikipedia.org/wiki/Georges-Pierre_Seurat�


Kazimir Malevich’s Black Square, 
1915, Oil on Canvas
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Increasing  amount  of  information

Single sample to find   
problematic pixels

Multiple samples, uniform 
processing

Integral approximation/ 
analytical

Whitted’80:
color variation  more rays

Jin et al’09:
various discontinuities 
more rays

MSAA/CSAA:
coverage  color blending

SSAA:
gold standard

Bala et al’03:
projected silhouettes 
constraint color interpolation

Sen and 
Cammarano’03/04:
shadow silhouette 
maps  improved hard 
shadows
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MLAA Could we move it higher 
on quality scale? 



• top: reference image
• psnr(top, middle)  = 14.8
• psnr(top, bottom) = 23.2

(peak-signal-to-noise-ratio: 
bigger number means 
smaller average error)

Bottom line:
We’re in business of 
creating nice pictures 
(mostly)



• Motivation: to allow original low-res computer 
games run on better hardware

• Algorithms (from Wikipedia): 
EPX/Scale2x/AdvMAME2x, 
Scale3x/AdvMAME3x, Eagle, 2xSaI, hqnx

http://en.wikipedia.org/wiki/Pixel_art_scaling_algorithms�


• General approach: local rule-based filter

• It is fine approach for the task at hand

• Problem: non-local influence is ignored

• Is it                           ?

• Or                             ?



• How can we do better? (since filtering doesn’t 
work that well)

• We can borrow ideas from Bala et al’03 and 
Sen and Cammarano’03/04:
– Reconstruct (linear) discontinuities in the image

– Filter around these discontinuities

• Goal: create better looking image

• Non-goal: compete with SSAA (we simply don’t 
have data for this)



“畫意能達萬言”

Before describing the 
algorithm,  let’s run this 
demo…



• For any given image
1. Find piecewise linear segments which, 

hopefully, will bound homogeneous areas 
in the image

2. Interpolate colors near these segments

• And we want to do it as simple as 
possible, since we only have a color data 
anyway (Occam’s razor)



• For any given image

1. Find piecewise linear 
segments (don’t have to 
be connected)

2. Interpolate colors near 
these segments 
(constrained filtering)



• For each segment
– Segments start and end on pixel boundaries (by design)
– For any pixel that is intersected by the segment
– Compute areas of 2 trapezoids formed by segment ∩ pixel

– Set the new color (of the yellow pixel) to the weighted sum 
of the old color and the color of the neighboring pixel with 
the weights ～ trapezoid areas

– Choose one neighboring pixel (defined by the segment) 

Note: each pixel could be 
blended multiple times 
(we will have to take care 
of this if multiple threads 
are used)



• What we want: yellow segment. We find it by looking for
• axis-aligned separation lines – ones which separate B and W 

pixels (or different ones in color images)
• For each separation line (going between pixels)

• we find all orthogonal ones and use middle points of the 
corner pixels’ edges

• to recreate a line segment (considering all possible shapes, 
Z-shape is shown) 

• Pixels  (        )  on the opposite side of the separation line will be 
used for blending @ the second step



• All we need is f (pixel1,pixel2) which tells us if two pixels 
are “different”

• For each line separating different pixels there could be 
multiple orthogonal separation lines

• We execute 4 loops and
• use an additional criteria to identify orthogonal lines, 

which allow smooth color blending, and use only the 
first one found at each loop to create all possible shapes  



// Get the next row/column for the current thread
while ((line = img.nextLine(threadid)) != NULL)  { // Lines are interleaved for different threads

// Loop over all separation lines in the current row/column
SeparationLine sep (0);
while ((sep = img.nextSeparationLine(line, sep)) != NULL)  { 

enum {TOPLEFT, TOPRIGHT, BOTLEFT, BOTRIGHT, FOUR};
int ort[FOUR]; // up to 4 suitable orthogonal separation lines
float h[FOUR]; // height offsets from the separation line (0.5 for B&W)
for (int path = TOPLEFT; path < FOUR; path++) // Find all

ort[path] = img.orthogonal(path, h, sep); // suitable orthogonal lines
int done = 0; // how many shapes are processed; each shape is defined by 2 ort indices and 2 heights
// z-shape     └┐ resulting in line-segment going as  \
if (ort[TOPLEFT]!= -1 && ort[BOTRIGHT] != -1 && ort[TOPLEFT] < ort[BOTRIGHT])

done += img.blendInterval(ort, h, TOPLEFT, BOTRIGHT);
// z-shape    ┌┘ resulting in line-segment going as /
if (ort[BOTLEFT]!= -1 && ort[TOPRIGHT] != -1 && ort[BOTLEFT] < ort[TOPRIGHT])

done += img.blendInterval(ort, h, BOTLEFT, TOPRIGHT);
// u-shape    ┌┐ resulting in 2 line-segments going as ˄ (only if there are no Z-shapes)
if (!done && ort[TOPLEFT]!= -1 && ort[TOPRIGHT] != -1 && ort[TOPLEFT] < ort[TOPRIGHT])

img.blendInterval(ort, h, TOPLEFT, TOPRIGHT);
// u-shape    └┘ resulting in 2 line-segments going as ˅ (only if there are no Z-shapes)
if (!done && ort[BOTLEFT]!= -1 && ort[BOTRIGHT] != -1 && ort[TOPLEFT] < ort[BOTRIGHT])

img.blendInterval(ort, h, BOTLEFT, BOTRIGHT);
}

}



• There are no limitations per se, but 
certain situations will cause artifacts.

• There are 2 groups of artifacts:
– Typical for all one-sample-per-pixel 

algorithms @ Nyquist limit

– Specific for MLAA (more or less)
• Abrupt pixel color updates for slow moving 

objects

• Varying lighting can trigger threshold-based 
color changes

• Small fonts (esp. clear-typed) will look ugly
TOL game, courtesy of 
Jacco Bikker           
and his students



• MLAA in a few words: it is an image filtering 
constrained by the linear segments, 
reconstructed from the input image

• Pros: uses only color data
– Applicable for all images

– Can be executed asynchronously with the image 
creation algorithm (using double buffering)

• Cons: uses only color data
– Artifacts are unavoidable

– Performance/Quality tradeoffs are impossible



Announcement: We finally managed to set a web 
site for our group at Intel up and running as
http://visual-computing.intel-research.net
(it contains this paper, Carsten and Ingo paper, some older 
publications and also the source code for MLAA)
No need to write it down – get it from Ke-Sen Huang
site (CG papers)

http://visual-computing.intel-research.net/�
http://visual-computing.intel-research.net/�
http://visual-computing.intel-research.net/�
http://visual-computing.intel-research.net/�
http://visual-computing.intel-research.net/�
http://visual-computing.intel-research.net/�
http://kesen.huang.googlepages.com/�
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