
Alexander Reshetov

Intel Labs

2 August 2009

• Prior Art

– Problems, solutions, ideas

• Morphological Antialiasing ∈ image-based AA

– Input: image. Output: ‘better looking’ image

– Algorithm, features, limitations

• Demos during the talk (hopefully)

Leonardo da Vinci – Inventor of Antialiasing

sfumato: painting
technique
“without lines or
borders, in the
manner of smoke
or beyond the
focus plane”

Leonardo da Vinci – Inventor of Antialiasing

Georges-Pierre Seurat’s La Parade, 1888 (from Wikipedia):
“The tiny juxtaposed dots of multi-colored paint allow the
viewer's eye to blend colors optically, rather than having the
colors blended on the canvas or pre-blended as a material
pigment.”

http://en.wikipedia.org/wiki/Georges-Pierre_Seurat�

Kazimir Malevich’s Black Square,
1915, Oil on Canvas

In
cr

ea
si

ng
qu

al
ity

Increasing amount of information

Single sample to find
problematic pixels

Multiple samples, uniform
processing

Integral approximation/
analytical

Whitted’80:
color variation  more rays

Jin et al’09:
various discontinuities 
more rays

MSAA/CSAA:
coverage  color blending

SSAA:
gold standard

Bala et al’03:
projected silhouettes 
constraint color interpolation

Sen and
Cammarano’03/04:
shadow silhouette
maps  improved hard
shadows

be
am

s,
co

ne
s,

pe
nc

ils
, b

ou
nd

s,
co

ve
rs,

 py
ra

mi
da

l ra
ys

MLAA Could we move it higher
on quality scale?

• top: reference image
• psnr(top, middle) = 14.8
• psnr(top, bottom) = 23.2

(peak-signal-to-noise-ratio:
bigger number means
smaller average error)

Bottom line:
We’re in business of
creating nice pictures
(mostly)

• Motivation: to allow original low-res computer
games run on better hardware

• Algorithms (from Wikipedia):
EPX/Scale2x/AdvMAME2x,
Scale3x/AdvMAME3x, Eagle, 2xSaI, hqnx

http://en.wikipedia.org/wiki/Pixel_art_scaling_algorithms�

• General approach: local rule-based filter

• It is fine approach for the task at hand

• Problem: non-local influence is ignored

• Is it ?

• Or ?

• How can we do better? (since filtering doesn’t
work that well)

• We can borrow ideas from Bala et al’03 and
Sen and Cammarano’03/04:
– Reconstruct (linear) discontinuities in the image

– Filter around these discontinuities

• Goal: create better looking image

• Non-goal: compete with SSAA (we simply don’t
have data for this)

“畫意能達萬言”

Before describing the
algorithm, let’s run this
demo…

• For any given image
1. Find piecewise linear segments which,

hopefully, will bound homogeneous areas
in the image

2. Interpolate colors near these segments

• And we want to do it as simple as
possible, since we only have a color data
anyway (Occam’s razor)

• For any given image

1. Find piecewise linear
segments (don’t have to
be connected)

2. Interpolate colors near
these segments
(constrained filtering)

• For each segment
– Segments start and end on pixel boundaries (by design)
– For any pixel that is intersected by the segment
– Compute areas of 2 trapezoids formed by segment ∩ pixel

– Set the new color (of the yellow pixel) to the weighted sum
of the old color and the color of the neighboring pixel with
the weights ～ trapezoid areas

– Choose one neighboring pixel (defined by the segment)

Note: each pixel could be
blended multiple times
(we will have to take care
of this if multiple threads
are used)

• What we want: yellow segment. We find it by looking for
• axis-aligned separation lines – ones which separate B and W

pixels (or different ones in color images)
• For each separation line (going between pixels)

• we find all orthogonal ones and use middle points of the
corner pixels’ edges

• to recreate a line segment (considering all possible shapes,
Z-shape is shown)

• Pixels () on the opposite side of the separation line will be
used for blending @ the second step

• All we need is f (pixel1,pixel2) which tells us if two pixels
are “different”

• For each line separating different pixels there could be
multiple orthogonal separation lines

• We execute 4 loops and
• use an additional criteria to identify orthogonal lines,

which allow smooth color blending, and use only the
first one found at each loop to create all possible shapes

// Get the next row/column for the current thread
while ((line = img.nextLine(threadid)) != NULL) { // Lines are interleaved for different threads

// Loop over all separation lines in the current row/column
SeparationLine sep (0);
while ((sep = img.nextSeparationLine(line, sep)) != NULL) {

enum {TOPLEFT, TOPRIGHT, BOTLEFT, BOTRIGHT, FOUR};
int ort[FOUR]; // up to 4 suitable orthogonal separation lines
float h[FOUR]; // height offsets from the separation line (0.5 for B&W)
for (int path = TOPLEFT; path < FOUR; path++) // Find all

ort[path] = img.orthogonal(path, h, sep); // suitable orthogonal lines
int done = 0; // how many shapes are processed; each shape is defined by 2 ort indices and 2 heights
// z-shape └┐ resulting in line-segment going as \
if (ort[TOPLEFT]!= -1 && ort[BOTRIGHT] != -1 && ort[TOPLEFT] < ort[BOTRIGHT])

done += img.blendInterval(ort, h, TOPLEFT, BOTRIGHT);
// z-shape ┌┘ resulting in line-segment going as /
if (ort[BOTLEFT]!= -1 && ort[TOPRIGHT] != -1 && ort[BOTLEFT] < ort[TOPRIGHT])

done += img.blendInterval(ort, h, BOTLEFT, TOPRIGHT);
// u-shape ┌┐ resulting in 2 line-segments going as ˄ (only if there are no Z-shapes)
if (!done && ort[TOPLEFT]!= -1 && ort[TOPRIGHT] != -1 && ort[TOPLEFT] < ort[TOPRIGHT])

img.blendInterval(ort, h, TOPLEFT, TOPRIGHT);
// u-shape └┘ resulting in 2 line-segments going as ˅ (only if there are no Z-shapes)
if (!done && ort[BOTLEFT]!= -1 && ort[BOTRIGHT] != -1 && ort[TOPLEFT] < ort[BOTRIGHT])

img.blendInterval(ort, h, BOTLEFT, BOTRIGHT);
}

}

• There are no limitations per se, but
certain situations will cause artifacts.

• There are 2 groups of artifacts:
– Typical for all one-sample-per-pixel

algorithms @ Nyquist limit

– Specific for MLAA (more or less)
• Abrupt pixel color updates for slow moving

objects

• Varying lighting can trigger threshold-based
color changes

• Small fonts (esp. clear-typed) will look ugly
TOL game, courtesy of
Jacco Bikker
and his students

• MLAA in a few words: it is an image filtering
constrained by the linear segments,
reconstructed from the input image

• Pros: uses only color data
– Applicable for all images

– Can be executed asynchronously with the image
creation algorithm (using double buffering)

• Cons: uses only color data
– Artifacts are unavoidable

– Performance/Quality tradeoffs are impossible

Announcement: We finally managed to set a web
site for our group at Intel up and running as
http://visual-computing.intel-research.net
(it contains this paper, Carsten and Ingo paper, some older
publications and also the source code for MLAA)
No need to write it down – get it from Ke-Sen Huang
site (CG papers)

http://visual-computing.intel-research.net/�
http://visual-computing.intel-research.net/�
http://visual-computing.intel-research.net/�
http://visual-computing.intel-research.net/�
http://visual-computing.intel-research.net/�
http://visual-computing.intel-research.net/�
http://kesen.huang.googlepages.com/�
http://kesen.huang.googlepages.com/�
http://kesen.huang.googlepages.com/�
http://kesen.huang.googlepages.com/�
http://kesen.huang.googlepages.com/�

	Slide Number 1
	Talk Outline
	Prior Art: the Importance of Creating Nice Pictures
	Pixels Debut
	The One And Only…
	The More We Know…
	What is ‘Better Looking’ Image?
	Early Pixel Art Scaling Algorithms
	Pixel Art Scaling in a Nutshell
	The Plan
	A picture is worth a thousand words (a Chinese proverb?)
	MLAA Steps
	MLAA Steps Again (Illustration)
	2. Color Blending
	1. Finding Segments (B&W Example)
	What is Different for Color Images
	MLAA as-it-is on One Foil
	Usability of MLAA
	MLAA Characterization
	Slide Number 20

