

Object Partitioning Considered Harmful: Space Subdivision for BVHs

Stefan Popov, Iliyan Georgiev, Rossen Dimov, and Philipp Slusallek

Motivation

- Classical BVH construction is not perfect
 - Looks only at primitive's centroids

How much more performance is there?

Background

• SAH:
$$cost(N) = C_T + \frac{SA(N_L)|N_L| + SA(N_R)|N_R|}{SA(N)}$$

- Cost based BVH construction: Top-down
 - Partition set of N's primitives into N_L and N_R

- Take partition with minimal cost
- Exhaustive search: O(2^N)

Classical BVH Construction

- Assumes finely tessellated geometry
 - Primitive \rightarrow point

Can We Do Better?

- CBVH split
 - Cost ≈ 700

Optimal partitionCost ≈ 100

\bigcirc

Geometric Partitioning

- Regular approach: Partition N's primitives
 - Evaluate AABBs, and use to compute cost
 - O(2^N) partitions to test
- Geometric partitioning:
 - Fix child AABBs and put primitives according to SAH
 - Some configurations are infeasible
 - Child AABB boundaries ≡ boundaries of primitives
 - O(N¹²) configurations to test

Geometric Partitioning Example

- Boundaries of $N_{L or R}$ incident with dotted lines
- P_4 shared \rightarrow put into node with smaller SA

ſ			 	
ľ	Ν/			 N/_
	INL			INR

- Configuration infeasible
 - *P*₂ is not covered

Practical Considerations

- $O(N^{12})$ is actually $O(N^6)$
 - Each side of the parent *AABB* is inherited by a child
- Select child AABBs on a regular grid
 - Run-time: O(G⁶N^{0.5}) including cost calculation
 - Choosing $G=RN^{1/6}$ yields $O(N^{1.5})$
 - Look at CBVH configurations as well

Results: FPS Random Rays

Classical BVH Our Method (R=64) Our Method (R=4K)

Results: Surface Area Cost

Classical BVH
Our Method (R=64)
Our Method (R=4K)

Result Analysis

- Suspect: SAH
 - Overlap + locally minimizing SAH has adverse effect
- Experiment: Use recursive cost evaluation
 - Tree cost better than CBVH but slower FPS!
- Hypothesis: SA model needs space partitioning
 - Intuition: Early ray termination
- New algorithm
 - Penalize overlap in cost function
 - Refine search space by allowing primitive splitting

Splitting Primitives

Feasible and infeasible configurations

Two possible ways to split a primitive

SAH cost is the same

Search Spaces

- Child AABBs ∈ continuum inside parent's AABB
 - Not limited to boundary of primitives anymore
- Limit search to a grid for practical purposes
- Augment with search space of other algorithms
 - CBVH & KD-tree construction search spaces

Penalizing Overlap

Bias SAH to account for overlap

$$cost(N) = C_T + \left(1 + C_O \frac{V(N_L \cap N_R)}{V(N)}\right) \frac{SA(N_L) |N_L| + SA(N_R) |N_R|}{SA(N)}$$

- C₀ the overlap penalty
 - Standard SAH: C_o = 0
 - Standard SAH with space partitioning: $C_o \rightarrow \infty$

The Generic Algorithm

- Parameters:
 - Search space
 - Overlap penalty
- Algorithm
 - Take configuration ∈ search space with lowest cost
- Interesting parameters
 - CBVH: BVH, C₀ = 0
 - Full: Grid + KD tree + BVH, $C_o \rightarrow \infty$
 - KDBVH: KD tree, C_o irrelevant

Results: FPS Random Rays

■ CBVH ■ Full Search ■ KDBVH

Results: FPS Frustum Traversal

■ CBVH ■ Full Search ■ KDBVH

Comparison to Pre-Splitting

Sponza Rotated Sponza

Role of Overlap Penalty

Spatial Build Algorithm

- Implement KDBVH using sweep plane
- Extensions:
 - Combine with CBVH to control size using C_o
 - Sampling of cost function
- Issues: Might miss cost minimum
 - Cost is quadratic between split plane positions

CDD

Conclusion & Future Work

- SAH inadequate without space partitioning!
- Generic framework to study BVH construction
 - Can explore full 2^N search space
- Spatial build algorithm
 - Fast with near optimal results
- Research early termination aware cost function

Thank you!