
Scheduling in OptiX™
The NVIDIA ray tracing engine

Austin Robison

The OptiX Engine

A General Purpose Ray Tracing API
Rendering, baking, collision detection, A.I. queries, etc.

Modern shader-centric, stateless and bindless design

Is not a renderer but can implement many types of renderers

Highly Programmable
Shading with arbitrary ray payloads

Ray generation/framebuffer operations (cameras, data unpacking, etc.)

Programmable intersection (triangles, NURBS, implicit surfaces, etc.)

Easy to Program
Write single ray code (no exposed ray packets)

No need to rewrite programs to target different hardware

Acceleration structures are abstracted by the API

Programmable Operations

Rasterization

Fragment

Vertex

Geometry

Ray Tracing

Closest Hit

Any Hit

Intersection

Selector

Ray Generation

Miss

Exception

The ensemble of programs defines the rendering algorithm

(or collision detection algorithm, or sound propagation algorithm, etc.)

Entry Points

Ray Processing

Traversal

Host

Ray Generation Program

Intersection Program

Any Hit Program

Closest Hit Program

Selector Visit Program

rtTrace()

Miss Program

Exception Program

Buffers

Texture Samplers

Variables

Closest Hit Programs: called once after traversal has
found the closest intersection

Used for traditional surface shading

Deferred shading

Any Hit Programs: called during traversal for each
potentially closest intersection

Transparency without traversal restart (can read textures):
rtIgnoreIntersection()

Terminate shadow rays that encounter opaque objects:
rtTerminateRay()

Both can be used for shading by modifying per ray state

struct PerRayData_radiance

{

float3 result;

float importance;

int depth;

};

rtDeclareVariable(float3, eye);

rtDeclareVariable(float3, U);

rtDeclareVariable(float3, V);

rtDeclareVariable(float3, W);

rtBuffer<float4, 2> output_buffer;

rtDeclareVariable(

rtNode, top_object);

rtDeclareVariable(

unsigned int, radiance_ray_type);

rtDeclareSemanticVariable(

rtRayIndex, rayIndex);

RT_PROGRAM void pinhole_camera()

{

…

float2 d = make_float2(index) /

make_float2(screen) * 2.f - 1.f;

float3 ray_origin = eye;

float3 ray_direction =

normalize(d.x*U + d.y*V + W);

Ray ray = make_ray(ray_origin,

ray_direction,

radiance_ray_type,

scene_epsilon, RT_DEFAULT_MAX);

PerRayData_radiance prd;

prd.importance = 1.f;

prd.depth = 0;

rtTrace(top_object, ray, prd);

output_buffer[index] =

prd.result;

}

Execution Model on GT200 Class HW

Continuations

Execution is a state machine, presented as recursion

Software managed local stack

Accomplished through PTX recompilation

Persistent Warps

Launch just enough threads to fill the machine

Each warp, upon termination of its rays, gets new work

Two level load balancing

Balance work between SMs and their persistent warps

Balance work between GPUs

GPU
H

o
st

 M
em

o
ry

 P
o

o
l

GPU

GPU

GPU

GPU Work Pool

SM SM SM

Shared Memory Pool

Threads Fetch & Perform Work

Pinhole Camera

Traversal

Phong Shader

1. Pinhole
Before Trace

5. Pinhole
After Trace

3. Phong Shader
Before Trace

4. Phong Shader
After Trace

2. Traversal

while(true):

switch(state):

case 0:

…code for state0…

case 1:

…code for state1…

case 2:

…code for state2…

…

1 1 1 1 1 1 11

Call to rtTrace()

1 5

2

3 4

2 2 2 2 2 2 22

All threads enter traversal, hit the Phong material

1 5

2

3 4

3 3 3 3 3 3 33

All cast secondary rays via rtTrace()

1 5

2

3 4

2 2 2 2 2 2 22

Back to traversal,
some rays hit again and some miss

1 5

2

3 4

3 3 4 4 4 4 43

We now have divergence in the warp’s execution.
What is the minimum number of steps to state 5?

1 5

2

3 4

while(true):

schedule = schedule_state()

if(state == schedule):

switch(state):

case 0:

…code for state0…

case 1:

…code for state1…

case 2:

…code for state2…

…

4 State Transitions to Finish

1 5

2

3 4

1 5

2

3 4

1 5

2

3 4

1 5

2

3 4

1 5

2

3 4

3 State Transitions to Finish

1 5

2

3 4

1 5

2

3 4

1 5

2

3 4

1 5

2

3 4

Per-pixel Render Time
Warp Synchronous Prioritized

Frame rate: 1.25x

Warp Divergence
Warp Synchronous Prioritized

States executed: 0.74x

Warp Synchronous State History

Prioritized State History

Warp Executions (Lower is Better)

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

Warp Synchronous Prioritized

OptiX SDK Release
Available to registered developers in early fall from

http://www.nvidia.com

http://www.nvidia.com/

Go See Steve Parker’s talk
Wednesday at 2:45

SIGGRAPH Room 294
for more API information

and a short tutorial

Questions?
arobison@nvidia.com

http://www.nvidia.com

mailto:arobison@nvidia.com
http://www.nvidia.com/
http://www.nvidia.com/
http://www.nvidia.com/

