


The OptiX Engine

® A General Purpose Ray Tracing API
Rendering, baking, collision detection, A.l. queries, etc.
Modern shader-centric, stateless and bindless design
Is not a renderer but can implement many types of renderers

® Highly Programmable
Shading with arbitrary ray payloads
Ray generation/framebuffer operations (cameras, data unpacking, etc.)
Programmable intersection (triangles, NURBS, implicit surfaces, etc.)

® Easy to Program
® Write single ray code (no exposed ray packets)
No need to rewrite programs to target different hardware
Acceleration structures are abstracted by the API

<A NVIDIA.



Programmable Operations

Rasterization Ray Tracing

» Fragment * Closest Hit
¢ Any Hit

o Vertex ¢ Intersection

.

* Geometry

0

-
L

Selector

Ray Generation
\ISS

Exception

The ensemble of programs defines the rendering algorithm
(or collision detection algorithm, or sound propagation algorithm, etc.)

<A NVIDIA.,



2

puitrers

lexture samplers

variaples

L
o

:
-

fion Program L"\J

Any Hit Program @

Selector Visit Program L\J

<A NVIDIA.



® Closest Hit Programs: called once after traversal has
found the closest intersection

Used for traditional surface shading
Deferred shading

® Any Hit Programs: called during traversal for each
potentially closest intersection

® Transparency without traversal restart (can read textures):
rtignorelntersection()

® Terminate shadow rays that encounter opaque objects:
rtTerminateRay()

® Both can be used for shading by modifying per ray state

<A NVIDIA.



struct PerRayData radiance
{

float3 result;

float importance;

int depth;
}i

rtDeclareVariable (float3, eye);
rtDeclareVariable (float3, U);
rtDeclareVariable (float3, V);
rtDeclareVariable (float3, W),

rtBuffer<float4, 2> output buffer;

rtDeclareVariable (
rtNode, top object);
rtDeclareVariable (

unsigned int, radiance ray type);

rtDeclareSemanticVariable (

rtRayIndex, rayIndex);

RT PROGRAM void pinhole camera ()
{

float2 d = make float2(index) /
make float2(screen) * 2.f - 1.f;

float3 ray origin = eye;

float3 ray direction =
normalize(d.x*U + d.y*V + W)

Ray ray = make ray(ray origin,
ray direction,
radiance ray type,
scene _epsilon, RT DEFAULT MAX) ;

PerRayData radiance prd;
prd.importance = 1.f;
prd.depth = 0;

rtTrace (top object, ray, prd);

output buffer[index] =
prd.result;

<X NVIDIA.



Execution Model on GT200 Class HW

® Continuations
Execution is a state machine, presented as recursion
® Software managed local stack
® Accomplished through PTX recompilation
® Persistent Warps
Launch just enough threads to fill the machine
Each warp, upon termination of its rays, gets new work
® Two level load balancing
® Balance work between SMs and their persistent warps

® Balance work between GPUs

<A NVIDIA.



Host Memory Pool

i S S 5

Threads Fetch & Perform Work

<A NVIDIA.



PhoNg Snader

<A NVIDIA.



<A NVIDIA.



while (true) :
switch (state) :
case 0O:
..code for statel..
case 1:
..code for statel..
case 2:

..code for state?..

<A NVIDIA.



Call to rtTrace()

~
L

u
-

<A NVIDIA.




All threads enter traversal, hit the Phong material

5
ol

o
2
=

<A NVIDIA.



All cast secondary rays via rtTrace()

R
w
r

J

<A NVIDIA.



Back to traversal,
some rays hit again and some miss

s
5

o
r
=

<A NVIDIA.



We now have divergence in the warp’s execution.
What is the minimum number of steps to state 57

<A NVIDIA.



while (true) :

schedule = schedule state ()

1f (state == schedule) :
switch (state) :

case 0:

..code for stateO..

case 1:

..code for statel..

case 2:

..code for stateZ..

E ol
=2

<A NVIDIA.



4 State Transitions to Finish

<A NVIDIA.



3 State Transitions to Finish

g
.
>
=
3




<A NVIDIA.



Per-pixel Render Time

Warp Synchronous Prioritized

Frame rate: 1.25x

<A NVIDIA.



Warp Divergence

Warp Synchronous Prioritized
States executed: 0.74x

<A NVIDIA.



Warp Synchronous State History

<A NVIDIA.



Prioritized State History

<A NVIDIA.



Warp Executions (Lower is Better)

Prioritized

Warp Synchronous

3.5E+06

3.0E+06

2.5E+06

2.0E+06

1.5E+06 -

1.0E+06 A

5.0E+05 -

0.0E+00

i
>
S
\(\\ /
N/

P
&

e/ @/ @
d (\o.(b(\o(b
PN
/v\i\\/(-\{\
S S
Kt
PP
(Z RAYAIPIVAW

QO
@ P @ & i
SIS

<

RV
SNIESIENE
é\./ %\./ a}/ %\./

0@
2
/\(\\\\'




OptiX SDK Release

Available to registered developers in early fall from
http://www.nvidia.com

i

[~ {

)
.,"'
il

<A NVIDIA.,


http://www.nvidia.com/

Go See Steve Parker’s talk
Wednesday at 2:45

SIGGRAPH Room 294
for more API information

and a short tutorial

<A NVIDIA.



Questions?

arobison@nvidia.com

http://www.nvidia.com

<A NVIDIA.


mailto:arobison@nvidia.com
http://www.nvidia.com/
http://www.nvidia.com/
http://www.nvidia.com/

