
Bucket Depth Peeling

Fang Liu Mengcheng Huang Xuehui Liu Enhua Wu

Institute of Software Chinese Academy of Science

Background

 Multi-fragment effects

- Operates on multiple fragments

per pixel

 Less efficient in current

graphics pipeline

- Optimized to handle opaque

surfaces

Related Work

 Primitive level

- Painter’s algorithm - Visibility ordering [Govindaraju et al. 05]

 Fragment level

- A-Buffer [Carpenter 84] - Depth peeling [Mammen 84] [Everitt 01]

- R-Buffer [Wittenbrink 01] - F-Buffer [Mark et al. 01]

- K-Buffer [Bavoil et al. 07][Liu et al.06] - Stencil routed A-Buffer [Myers et al. 07]

- Dual depth peeling [Bavoil et al. 08]

 Hybrid methods

- Z-Batch [Wexler et al. 05] - Coherent layer peeling [Carr et al. 08]

Related Work

 Depth Peeling

- A linear complexity algorithm to capture and sort multiple

fragment in single pass

- Multiple rasterizations of the scenes

 K-Buffer

- Allocate a fix sized buffer per pixel

- Capture and sort K fragments in single pass

- Read Modify Write (RMW) hazards

Related Work

 Stencil routed A-Buffer

- Capture fragments in MSAA buffer by stencil routing

- Post-processing by bitonic sort

 Dual depth peeling

- Peel the scene from front and back simultaneously

- 2x speedup

Our Solution

 Bucket depth peeling

- Peel off one layer in each geometry pass

- Bucket sort fragments on GPU

- No RWM hazards

- Adaptive bucket peeling

Outline

 Bucket sort on GPU

 Bucket depth peeling

 Adaptive bucket peeling

 Results

Bucket Sort on GPU

 Fixed size buffer per pixel + data scattering

 Multiple Render Target (MRT)

- 8 MRTs with format RGBA32F (Geforce 8800GTX)

- A bucket array of size 32 per pixel

 Scatter: update channels of MRT

Explicit Update

 Explicitly write to a specific channel of MRT does not

work

M1 M2 M3

M4

0 0 0 0 0 0 M4 0 0 0

The Correct Way

 32bit Max/Min blending

- Keep the greater/smaller value

 Guarantee correct results under concurrent update

- Initial each slot to 0

- Update other slots by 0

 Collisions: always keep one correct value

Concurrent Update

0 0 0 0 0 0 0 0 0 0

M1 M2 M3M4M5 M6

Outline

 Bucket sort on GPU

 Bucket depth peeling

 Adaptive bucket peeling

 Results

Bucket Depth Peeling

 Uniformly divide the depth range at each pixel location

into 32 intervals

 A incoming fragment is mapped to the bucket

according to

 zNear and zFar

- Exact: Too expensive

- Approximate: Bounding box or visual hull

32 ()
()

fd zNear
k floor

zFar zNear

thk

Bucket Depth Peeling

 The bucket: fragment with Maximum depth value in

the subinterval

 Non-empty buckets already in correct depth ordering

thk
thk

Bucket Grouping

 Group the bucket array into 16 pairs

 Depth range: 16 sub-intervals

 An incoming fragment is mapped to the bucket pair

according to

 Update the pair of buckets by simultaneously

)
)(16

(
zNearzFar

zNeard
floork

f

(1 ,)f fd d

thk

thk

Bucket Grouping

 The pair of buckets: fragments with minimum and

maximum depth values in the subinterval

 Non-empty buckets already in correct depth ordering

 Potentially less collision

thk
thk

1

1

1

[,)

1

[,)

min 1 max (1)

max max ()

k k

k k

k f
df d d

k f
df d d

d d

d d

Bucket Depth Peeling

 Ideal for uniform distributed scenes

 Non-uniform scenes: Multi-pass approach

- Sparse layout may cause memory exhaustion

 Multiple fragment attributes: Mismatch

 Uniform division does not consider layer distribution

Outline

 Bucket sort on GPU

 Bucket depth peeling

 Adaptive bucket peeling

 Results

Adaptive Bucket Peeling

 Adapt the partition of the subintervals to the distribution

of the fragments

- One fragment in one bucket

 Cost: Addition geometry pass to obtain layer distribution

information

Depth Histogram

 Encode layer distribution

 Interpret 8 MRT as a bit array of 1024 bits

 Depth range: 1024 intervals

 Each bit indicates the presence of fragments

The Algorithm

 Create Depth

histogram

- Set the bit using logical

operation OR
Bounding Box

zNear zFar0f 1f
2f

3f

01…001100000100 01…001100000100

0d 3d
1024d

1023d9d 10d

Depth Histogram

The Algorithm

 Equalize the depth

histogram

- Scanning for non-zero

bits

- Store the upper bound

of non-empty intervals

Bounding Box
zNear zFar0f 1f

2f
3f

01…001100000100 01…001100000100

0d 3d
1024d

1023d9d 10d

Depth Histogram

3d 9d 10d 1023dEqualized Histogram

The Algorithm

 Perform Bucket

Sorting

- Guided by equalized

histogram
Bounding Box

01…001100000100 01…001100000100

0d 3d
1024d

1023d9d 10d

Depth Histogram

3d 9d 10d 1023dEqualized Histogram

0d 3d
9d 10d

1023d
0f 1f 2f 3fBucket Array

zNear zFar0f 1f
2f

3f

Adaptive Bucket Peeling

 Reduce collisions substantially by adaptive partitioning

 Fragment attributes consistency

 Two geometry pass + one screen pass

Outline

 Bucket sort on GPU

 Bucket depth peeling

 Adaptive bucket peeling

 Results

Results

 Implemented using OpenGL and Cg shading language

ver.2.1

 All results generated on a commodity PC of Intel Duo

Core 2.4G Hz with Nvidia Geforce 8800 GTX

Results

Results

Results

More Results

More Results

More Results

Performance

 Up to N times

speedup for

large scenes

with depth

complexity N

 Performance

degrades for

small models

Quality Analysis

 Error measure with EPR

 EPR for our algorithm

- BDP1: 0.3% - 0.9%

- BDP2: 0.05% - 0.15%

- ADP: 0.01%

Total

Err

N

N
EPR

Limitations

 Approximate

- Limited resolution for depth histogram

- Artifacts appear at sharp edges or details of the model

 Memory overhead

- 8 MRT textures for depth histogram and 8 MRT for bucket array

- High screen resolutions

Conclusions

 Bucket depth peeling

- A novel linear complexity approach to capture and sort multiple

fragments on GPU

- An adaptive two-pass approach that greatly reduce fragment

collisions

- Great speedup to depth peeling

Future Work

 Design a good mapping function with lower collision rate

 Explore programmable graphics pipeline

- “Single Pass Depth Peeling using CUDA Rasterizer” at

SIGGRAPH 2009 talks

- Exact solution in single pass

Thank You !

Questions ?

Mengcheng Huang <hmcen@ios.ac.cn>

