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Background

 Multi-fragment effects

- Operates on multiple fragments 

per pixel

 Less efficient in current 

graphics pipeline

- Optimized to handle opaque 

surfaces



Related Work

 Primitive level

- Painter’s algorithm                                        - Visibility ordering [Govindaraju et al. 05]

 Fragment level

- A-Buffer [Carpenter 84]                                - Depth peeling [Mammen 84] [Everitt 01]

- R-Buffer [Wittenbrink 01]                              - F-Buffer [Mark et al. 01]

- K-Buffer [Bavoil et al. 07][Liu et al.06]          - Stencil routed A-Buffer [Myers et al. 07]

- Dual depth peeling [Bavoil et al. 08]

 Hybrid methods

- Z-Batch [Wexler et al. 05]                             - Coherent layer peeling [Carr et al. 08]



Related Work

 Depth Peeling

- A linear complexity algorithm to capture and sort multiple 

fragment in single pass

- Multiple rasterizations of the scenes

 K-Buffer

- Allocate a fix sized buffer per pixel

- Capture and sort K fragments in single pass

- Read Modify Write (RMW) hazards



Related Work

 Stencil routed A-Buffer

- Capture fragments in MSAA buffer by stencil routing

- Post-processing by bitonic sort

 Dual depth peeling

- Peel the scene from front and back simultaneously

- 2x speedup



Our Solution

 Bucket depth peeling

- Peel off one layer in each geometry pass

- Bucket sort fragments on GPU

- No RWM hazards

- Adaptive bucket peeling
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Bucket Sort on GPU

 Fixed size buffer per pixel + data scattering 

 Multiple Render Target (MRT)

- 8 MRTs with format RGBA32F (Geforce 8800GTX)

- A bucket array of size 32 per pixel

 Scatter: update channels of MRT



Explicit Update

 Explicitly write to a specific channel of MRT does not 

work
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The Correct Way

 32bit Max/Min blending

- Keep the greater/smaller value

 Guarantee correct results under concurrent update

- Initial each slot to 0

- Update other slots by 0

 Collisions: always keep one correct value



Concurrent Update

0 0 0 0 0 0 0 0 0 0
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Bucket Depth Peeling

 Uniformly divide the depth range at each pixel location 

into 32 intervals

 A incoming fragment is mapped to the      bucket 

according to

 zNear and zFar

- Exact: Too expensive

- Approximate: Bounding box or visual hull
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Bucket Depth Peeling

 The      bucket:  fragment with Maximum depth value in 

the      subinterval

 Non-empty buckets already in correct depth ordering
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Bucket Grouping

 Group the bucket array into 16 pairs

 Depth range: 16 sub-intervals

 An incoming fragment is mapped to the      bucket pair 

according to

 Update the      pair of buckets by              simultaneously
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Bucket Grouping

 The      pair of buckets: fragments with minimum and 

maximum depth values in the subinterval

 Non-empty buckets already in correct depth ordering

 Potentially less collision
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Bucket Depth Peeling

 Ideal for uniform distributed scenes

 Non-uniform scenes: Multi-pass approach

- Sparse layout may cause memory exhaustion

 Multiple fragment attributes: Mismatch

 Uniform division does not consider layer distribution
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Adaptive Bucket Peeling

 Adapt the partition of the subintervals to the distribution 

of the fragments

- One fragment in one bucket

 Cost: Addition geometry pass to obtain layer distribution 

information



Depth Histogram

 Encode layer distribution

 Interpret 8 MRT as a bit array of 1024 bits

 Depth range: 1024 intervals

 Each bit indicates the presence of fragments



The Algorithm

 Create Depth 

histogram

- Set the bit using logical 

operation OR
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The Algorithm

 Equalize the depth 

histogram

- Scanning for non-zero 

bits

- Store the upper bound 

of non-empty intervals
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The Algorithm

 Perform Bucket 

Sorting

- Guided by equalized 

histogram
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Adaptive Bucket Peeling

 Reduce collisions substantially by adaptive partitioning

 Fragment attributes consistency

 Two geometry pass + one screen pass
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Results

 Implemented using OpenGL and Cg shading language 

ver.2.1 

 All results generated on a commodity PC of Intel Duo 

Core 2.4G Hz with Nvidia Geforce 8800 GTX 



Results



Results



Results



More Results



More Results



More Results



Performance

 Up to N times 

speedup for 

large scenes 

with depth 

complexity N

 Performance 

degrades for 

small models



Quality Analysis

 Error measure with EPR

 EPR for our algorithm

- BDP1: 0.3% - 0.9%

- BDP2: 0.05% - 0.15%

- ADP:  0.01%

Total

Err

N

N
EPR



Limitations

 Approximate

- Limited resolution for depth histogram

- Artifacts appear at sharp edges or details of the model

 Memory overhead

- 8 MRT textures for depth histogram and 8 MRT for bucket array

- High screen resolutions



Conclusions

 Bucket depth peeling

- A novel linear complexity approach to capture and sort multiple 

fragments on GPU

- An adaptive two-pass approach that greatly reduce fragment 

collisions

- Great speedup to depth peeling



Future Work

 Design a good mapping function with lower collision rate

 Explore programmable graphics pipeline

- “Single Pass Depth Peeling using CUDA Rasterizer” at 

SIGGRAPH 2009 talks

- Exact solution in single pass



Thank You !

Questions ?

Mengcheng Huang <hmcen@ios.ac.cn>


