
A Directionally Adaptive
Edge Anti-Aliasing Filter
Konstantine Iourcha

Jason Yang

Andrew Pomianowski

High Performance Graphics | August 2, 2009

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20092

Motivation

 Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

– Goal

 Improve primitive edge appearance (vs. “standard”
MSAA processing) using the same number of samples
and better software filtering algorithms

– Benefits

 Rendering time (sans post-processing) and memory
footprint stay the same

 Software filters can be easily modified if needed

– Constraints

 Needs to run in real-time on the same GPU as rendering

 Needs to use existing HW features (e.g., MSAA data)

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20093

Motivation

 Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

– Goal

 Improve primitive edges appearance (vs. “standard“
MSAA processing) using same number of samples and
better software post filtering algorithms

– Benefits

 Rendering time (sans postprocessing) and memory
footprint stay the same

 Software filters can be easily modified if needed

– Constrains

 Need to run in real-time on the same GPU as rendering

 Need to use existing HW features (no HW modification)

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20094

Motivation

 Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

– Goal

 Improve primitive edges appearance (vs. “standard“
MSAA processing) using same number of samples and
better software post filtering algorithms

– Benefits

 Rendering time (sans postprocessing) and memory
footprint stay the same

 Software filters can be easily modified if needed

– Constrains

 Need to run in real-time on the same GPU as rendering

 Need to use existing HW features (no HW modification)

No AA

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20095

Motivation

 Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

– Goal

– Goal

 Improve primitive edges appearance (vs. “standard“
MSAA processing) using same number of samples and
better software post filtering algorithms

– Benefits

 Rendering time (sans postprocessing) and memory
footprint stay the same

 Software filters can be easily modifie)

8x MSAA

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20096

Motivation

 Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

– Goal

 Improve primitive edges appearance (vs. “standard“
MSAA processing) using same number of samples and
better software post filtering algorithms

– Benefits

 Rendering time (sans postprocessing) and memory
footprint stay the same

 Software filters can be easily modified if needed

– Constrains

 Need to run in real-time on the same GPU as rendering

 Need to use existing HW features (no HW modification)

Our New Filter

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20097

Contribution

 Developed an approach to edge AA using non-linear
filtering with significant quality improvements over
“standard” linear filters

 Developed a filtering algorithm feasible for real-time
rendering on the GPU by taking advantage of
existing MSAA data

 Implemented algorithms on the GPU

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20098

Outline

 MSAA overview

 Prior and parallel work

 Algorithm overview

 Implementation and results

 Future work

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20099

Multisample Anti-Aliasing (MSAA) [Akeley 1993]

 Estimate primitive pixel coverage by testing at
sample points

 Calculate a single color value per pixel per primitive
(usually at the center of the pixel or at the centroid
of the covered samples) and assign it to all covered
samples

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200910

MSAA Overview

 Speeds up rendering by not calculating values for
each sample separately

 Non-uniform sampling grid is used to improve pixel
coverage estimate, see also [Laine and Aila 2006]

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200911

MSAA Overview

 Primary goal is anti-aliasing of primitive and Z edges

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200912

MSAA Overview

 Texture resampling performed elsewhere
(mipmapping)

– High frequency texture details are lost in the MSAA color
buffer and cannot be easily post-processed further

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200913

Prior Work - AA

 Edge anti-aliasing research has more then 30 years
history (see references in the paper)

– Most algorithms use simple integration over pixel area

 More relevant are

– [Deering and Naegle 2002]

 Uses a wider kernel resolve filter in HW, but still linear

 Some blurring across the edge

– [Lau 2003]

 Post-processing with non-linear filter, 5x5 pixel area

 Does not use sub-pixel sample information

 Table grows exponentially with the size of the sampling
neighborhood; might be expensive on the GPU as it is

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200914

Parallel Work – Image Upscaling

 Huge amount of work, but little can be adopted

 Similar, but not the same problem

– 2x upsampling has ¼ sample/target pixel density

– AA has 8 sample/pixel density

 Common issues adapting upsampling algorithms

– Good processing of near 45° edges is most important,
(near) horizontal/vertical is less important

 It is exactly the opposite in the AA situation

– Not the best at handling high contrast edges
(modulation/blurring) (see also [Su and Willis 2004])

– Designed explicitly around Cartesian grids

– Naïve scaling to 72+ sample area often is not feasible

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200915

Parallel Work – Image Upscaling

 More relevant to our work

– Isolines/ isophote based [Wang and Ward 2007]

 Too complex, difficult to implement for our purposes

– Data dependant triangulation [Yu, Morse, and
Sederberg 2001]

 Fairly universal

 Very difficult to implement on GPU

 Requires triangulation structure which supports flips

 Indirect inspiration for our work

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200916

Design Approach for the New AA Filter

 Use intensity isolines rather than intensity itself

 Do not evaluate isolines explicitly

– Use interpolants or approximating functions instead;
simple ones can work

 Do not evaluate edge subpixel position explicitly

 Avoid complex structures

 Avoid big tables

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200917

Anti-Aliasing Model Revisited

 If we consider a single channel (gray-scale) image
as an intensity function over continuous [x, y]

– Pixel value can be computed by integrating the
intensity over the pixel area [Catmull 1978]

– Minimizes RMS error when a box filter (LCD display) is
used for reconstruction

– Some Moiré patterns can be visible due to high
frequency leakage; they can be reduced by a low pass
prefilter

 Standard MSAA computes an estimate of this
integration over the pixel

 We want to improve this estimate

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200918

Integration Approach and Isolines

 If we know isolines (isophotes) of the image function

– Sample values outside of the pixel can be used

– Weight them by the length of the corresponding
isoline segment in the pixel and add all of them

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200919

Integration Approach and Isolines

 If we know isolines (isophotes) of the image function

– Sample values outside of the pixel can be used

– Weight them by the length of the corresponding
isoline segment in the pixel and add all of them

– This works regardless of an edge presence (assuming
“more or less” uniform sampled isoline distribution)

– Will work for complex isoline topologies (unless
isolines are inside a single pixel), but we do not handle
this at the moment

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200920

Isoline Evaluation

 Need to find isolines

– But only in the case of low isoline curvature (as this is
the case near the actual primitive edges)

– Then we can model them as a straight lines

– And try to approximate our function with an extrusion
surface

v = [x, y], g is a fixed vector collinear to a local
gradient

– The biggest simplification would be to use a plane as
an approximation

 Still will estimate the local gradient

vgfvf ,
~

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200921

Isoline Evaluation

g

y

x

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200922

Linear Fitting In The Case of Three Channels
(“Gradient” Estimate)

 Use linear approximation

 Solve least squares problem to minimize

over RGB vectors C0, C1, and 2D vector g

 This approach works as locally R,G,B correlate well
(compare with S3TC); C1 is maximum correlation
vector in RGB space and C0 is mean color value

 Better than using just the luma channel as chromatic
edges are taken into account too

 Note: g is not a really a gradient in 3 channel case

Ii

ii vfCvgCF
2

01 ,

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200923

Filter Computation (Integration)

 Construct a square around
the pixel, with two sides
orthogonal to g

 Extend in the direction
orthogonal to g until it
meets the 3x3 pixel
boundary

 The inscribed length of the
line passing though sample
vi and orthogonal to g is its
weight wi

 Calculate the weighted sum
of all samples in the
rectangle

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200924

Thresholding

 Need to exclude g =0 cases

 Need to exclude pixels with high isoline curvature
from the filtering above and use “standard” resolve

– Avoids excessive corner smoothing

– Reduces processing time

– Threshold value is application dependent

 Based on how well the variance of the original
function is preserved by the linear function
approximation in the 3x3 pixel region

– Threshold cannot be “too tight”, as it will reject step
functions (edges)

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200925

Thresholding

x

In
te

n
s
it
y

x
In

te
n
s
it
y

Ambiguous Case Edge Case

Linear
Approximation

Linear
Approximation

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200926

Thresholding and Step Functions (Edges)

 The fitting and thresholding using a step function as
an approximation is possible

– Would provide more reliable edge detection

– Would cost much more to implement because different
positions of the step function discontinuity line among
samples need to be tested separately

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200927

Masking

 Similar purpose as thresholding

 If a pixel has two or more samples with different
colors it is an “edge” pixel, otherwise it is “non-
edge”

– “Internal” primitive pixels will have samples all of the
same color due to MSAA (some edges can generate
such pixels too; we ignore this)

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200928

Masking

 We use “edge” (X) / “non-edge” (O) 3x3 pixel
patterns to eliminate cases where filtering should
not be performed. (Compare with [Lau 2003])

– “Accept” patterns:

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200929

Masking

 For instance, if all 3x3 pixels are “edge” ones, there
is no long dominating edge, and we do not want to
smooth-out high-frequency in this case, etc.

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200930

Masking

After Masking“Found” Edges

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200931

Bringing It All Together:
Sample Implementation

 Four shader passes implemented using DirectX 10.1

 Pass 1: Identify edge pixels using the MSAA buffer.
Seed the frame buffer by performing a standard
resolve at each pixel

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200932

Pass 2

 Mask out candidate pixels using edge patterns

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200933

Pass 3

 Compute “gradients”

 Perform thresholding to further eliminate pixels

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200934

Pass 4

 Calculate the final frame buffer color for the pixels
from Pass 3 using the presented integration method
with input samples from a 3x3 pixel neighborhood

 Integration and weights are computed in shader

 All other pixels were already filtered in Pass 1

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200935

Performance Results

 Shipping as a driver feature on ATI Radeon HD
GPUs: Edge-Detect Custom Filter AA since 2007

 Filtering performance on scenes from Futuremark
3DMark03 using an ATI Radeon HD 4890 on an AMD
Phenom II X4 3.0 GHz

– 0.25 to 1.7 ms at 800x600

– 0.5 to 3 ms at 1024x768

– 1 to 5 ms at 1280x1024

 Performance dependent on the number of edges in
the scene

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200936

Quality

4x AA

New filter
using 4x AA

samples

8x AA

New filter
using 8x AA

samples

4 levels of gradation

10 levels of gradation

8 levels of gradation

22 levels of gradation

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200937

Quality (“Corner Smoothing”)

8x AA

New filter
using 8x AA

samples

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200938

Results Evaluation

 We did not run any numerical error evaluations, as it
is not clear how they can be interpreted

 No apparent temporal artifacts; temporal artifacts
are difficult to characterize numerically

 Numerous reviewers evaluated productized version
and found visual results to be good

 Thin objects (grass blades, etc.) have more gaps
than with high factor multisampling, but this is
expected (and can be fixed to a degree)

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200939

Future Work

 Use more complex approximating functions for
better edge classification (edge detection)

 Handle cases of curved isolines

 Morph filter kernel shape based on isoline curvature
(approximating function parameters and/or
approximation error)

 Sample patterns improvement

 Try to apply this to upscaling

– Image semantics problems need to be solved

?upscale

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200940

Thank You!

 Acknowledgments:

– Jeff Golds (AMD)

– Futuremark

– Tommti Systems

 Some additional implementation details will be
presented during the AMD talk in “Advances in Real-
Time Rendering in 3D Graphics and Games” at
SIGGRAPH Monday August 3rd

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200941

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices,
Inc. in the United States and/or other jurisdictions. Other names used in this presentation are

for identification purposes only and may be trademarks of their respective owners.

©2009 Advanced Micro Devices, Inc. All rights reserved.

