A Directionally Adaptive
Edge Anti-Aliasing Filter
Konstantine Iourcha

Jason Yang
Andrew Pomianowski

Motivation

= Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

Goal

Improve primitive edge appearance (vs. “standard”
MSAA processing) using the same number of samples
and better software filtering algorithms

Benefits

Rendering time (sans post-processing) and memory
footprint stay the same

Software filters can be easily modified if needed
Constraints
Needs to run in real-time on the same GPU as rendering

Needs to use existing HW features (e.g., MSAA data)

AMD\

Motivation

= Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

AMD\

Motivation

= Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

1 \

1 \

] \
1 \
1
1
1

No AA

AMD\

Motivation

= Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

1 \

1 \

1 \

1 \
I —_
1
1

8x MSAA

AMD\

Motivation

= Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

1 \

1 \

1 \

1 \
I —_
1
1

Our New Filter

AMD\

Contribution

= Developed an approach to edge AA using non-linear
filtering with significant quality improvements over
“standard” linear filters

= Developed a filtering algorithm feasible for real-time
rendering on the GPU by taking advantage of
existing MSAA data

= Implemented algorithms on the GPU

AMD\

Outline

= MSAA overview

= Prior and parallel work

= Algorithm overview

= Implementation and results
= Future work

AMD¢

T fuifuard s Pusion

Multisample Anti-Aliasing (MSAA) [Akeley 1993]

= Estimate primitive pixel coverage by testing at
sample points

= Calculate a single color value per pixel per primitive
(usually at the center of the pixel or at the centroid
of the covered samples) and assign it to all covered
samples

AMD\

MSAA Overview

= Speeds up rendering by not calculating values for
each sample separately

= Non-uniform sampling grid is used to improve pixel
coverage estimate, see also [Laine and Aila 2006]

AMDZY

MSAA Overview

= Primary goal is anti-aliasing of primitive and Z edges

{fsn}3 11 | A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 2009 AMD:'
The future is fusion

MSAA Overview

= Texture resampling performed elsewhere
(mipmapping)

High frequency texture details are lost in the MSAA color
buffer and cannot be easily post-processed further

AMDZT

T fuifuard s Pusion

Prior Work - AA

= Edge anti-aliasing research has more then 30 years
history (see references in the paper)

Most algorithms use simple integration over pixel area

= More relevant are
[Deering and Naegle 2002]

Uses a wider kernel resolve filter in HW, but still [inear

Some blurring across the edge
[Lau 2003]

Post-processing with non-linear filter, 5x5 pixel area
Does not use sub-pixel sample information

Table grows exponentially with the size of the sampling
neighborhood; might be expensive on the GPU as it is

AMD\

Parallel Work — Image Upscaling

= Huge amount of work, but little can be adopted
= Similar, but not the same problem
2X upsampling has 4 sample/target pixel density
AA has 8 sample/pixel density
= Common issues adapting upsampling algorithms

Good processing of near 45° edges is most important,
(near) horizontal/vertical is less important

It is exactly the opposite in the AA situation

Not the best at handling high contrast edges
(modulation/blurring) (see also [Su and Willis 2004])

Designed explicitly around Cartesian grids
Naive scaling to 72+ sample area often is not feasible

AMD\

Parallel Work — Image Upscaling

= More relevant to our work
Isolines/ isophote based [Wang and Ward 2007]
Too complex, difficult to implement for our purposes

Data dependant triangulation [Yu, Morse, and
Sederberg 2001]

Fairly universal
Very difficult to implement on GPU
Requires triangulation structure which supports flips

Indirect inspiration for our work

AMD\

Design Approach for the New AA Filter

Use intensity isolines rather than intensity itself

Do not evaluate isolines explicitly

Use interpolants or approximating functions instead;
simple ones can work

Do not evaluate edge subpixel position explicitly

Avoid complex structures
Avoid big tables

AMD Y

Anti-Aliasing Model Revisited

= If we consider a single channel (gray-scale) image
as an intensity function over continuous [X, Y]

Pixel value can be computed by integrating the
intensity over the pixel area [Catmull 1978]

Minimizes RMS error when a box filter (LCD display) is
used for reconstruction

Some Moiré patterns can be visible due to high
frequency leakage; they can be reduced by a low pass
prefilter

= Standard MSAA computes an estimate of this
integration over the pixel

= We want to improve this estimate

AMD\

Integration Approach and Isolines

= If we know isolines (isophotes) of the image function

Sample values outside of the pixel can be used

Weight them by the length of the corresponding
isoline segment in the pixel and add all of them

i

/|
|

AMD¢

T fuifuard s Pusion

Integration Approach and Isolines

= If we know isolines (isophotes) of the image function

Sample values outside of the pixel can be used

Weight them by the length of the corresponding
isoline segment in the pixel and add all of them

This works regardless of an edge presence (assuming
“more or less” uniform sampled isoline distribution)

Will work for complex isoline topologies (unless
isolines are inside a single pixel), but we do not handle
this at the moment

AMD¢

T fuifuard s Pusion

Isoline Evaluation

= Need to find isolines

But only in the case of low isoline curvature (as this is
the case near the actual primitive edges)

Then we can model them as a straight lines
And try to approximate our function with an extrusion

surface
f €} F(g,v}

v = [X, Y], g is a fixed vector collinear to a local
gradient

~
—

The biggest simplification would be to use a plane as
an approximation

Still will estimate the local gradient

AMD¢

T fuifuard s Pusion

Isoline Evaluation

21 | A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 2009 AHD“
Tt furbuena is fusion

Linear Fitting In The Case of Three Channels
("Gradient” Estimate)

Use linear approximation
Solve least squares problem to minimize

F= ZHC g,V,)+C, f(/lf

icl

over RGB vectors C,, C,, and 2D vector g

This approach works as locally R,G,B correlate well
(compare with S3TC); C; is maximum correlation
vector in RGB space and C, is mean color value

Better than using just the luma channel as chromatic
edges are taken into account too

Note: g is not a really a gradient in 3 channel case

AMD¢

T fuifuard s Pusion

Filter Computation (Integration)

= Construct a square around
the pixel, with two sides
orthogonal to g

= Extend in the direction
orthogonal to g until it
meets the 3x3 pixel
boundary

= The inscribed length of the
line passing though sample
v; and orthogonal to g is its
weight w;

= Calculate the weighted sum
of all samples in the
rectangle

AMD\

Thresholding

= Need to exclude g =0 cases

= Need to exclude pixels with high isoline curvature
from the filtering above and use “standard” resolve

Avoids excessive corner smoothing
Reduces processing time
Threshold value is application dependent

= Based on how well the variance of the original
function is preserved by the linear function
approximation in the 3x3 pixel region

Threshold cannot be “too tight”, as it will reject step
functions (edges)

AMD\

Thresholding

Ambiguous Case Edge Case
i\ Linear
'\/ Approximation
-
s i)
.g ——————— —mm 'g
Y] ,\)
=) 7 .)
C \ >4 Linear C
= A 7/ Approximation
~—~"
X X

AMDY

Tl Puibuana s Tusion

Thresholding and Step Functions (Edges)

= The fitting and thresholding using a step function as
an approximation is possible

Would provide more reliable edge detection

Would cost much more to implement because different
positions of the step function discontinuity line among
samples need to be tested separately

AMD Y

Masking

= Similar purpose as thresholding

= If a pixel has two or more samples with different
colors it is an “edge” pixel, otherwise it is "non-
edge”
“Internal” primitive pixels will have samples all of the

same color due to MSAA (some edges can generate
such pixels too; we ignore this)

AMD\

Masking

= We use “edge” (X) / "non-edge” (O) 3x3 pixel
patterns to eliminate cases where filtering should
not be performed. (Compare with [Lau 2003])

“Accept” patterns:

r 3 - 3

X X
x]o | | X[X
~ X0) |0o[o]
- X N - X 3
X] X X]0
00/x| [X[|0

AMD\

Masking

= For instance, if all 3x3 pixels are “edge” ones, there
is no long dominating edge, and we do not want to
smooth out high-frequency in this case, etc.

AMDZY

Masking

“Found” Edges After Masking

AMD

T fuifuard s Pusion

Bringing It All Together:
Sample Implementation

= Four shader passes implemented using DirectX 10.1

= Pass 1: Identify edge pixels using the MSAA buffer.
Seed the frame buffer by performing a standard
resolve at each pixel

Pass 2

= Mask out candidate pixels using edge patterns

o AMDZ1

Pass 3

= Compute “gradients”
= Perform thresholding to further eliminate pixels

Pass 4

= Calculate the final frame buffer color for the pixels
from Pass 3 using the presented integration method
with input samples from a 3x3 pixel neighborhood

= Integration and weights are computed in shader
= All other pixels were already filtered in Pass 1

- y v b & ==
AMD¢1
T Futuena is fusion

Performance Results

= Shipping as a driver feature on ATI Radeon HD
GPUs: Edge-Detect Custom Filter AA since 2007

= Filtering performance on scenes from Futuremark
3DMark03 using an ATI Radeon HD 4890 on an AMD
Phenom II X4 3.0 GHz

0.25to 1.7 ms at 800x600
0.5to 3 ms at 1024x768
1to5 msat 1280x1024

= Performance dependent on the number of edges in
the scene

AMDZt

Quality

4x AA
4 levels of gradation
New filter
using 4x AA
samples
10 levels of gradation
8x AA
8 levels of gradation
New filter
using 8x AA
samples

22 levels of gradation

AMDZ1

Quality ("Corner Smoothing”)

New filter
8x AA using 8x AA
samples -
{fn_a:n} 37 | A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 2009 AMD:'

Thee futura is fusion

Results Evaluation

= We did not run any numerical error evaluations, as it
is not clear how they can be interpreted

= No apparent temporal artifacts; temporal artifacts
are difficult to characterize numerically

= Numerous reviewers evaluated productized version
and found visual results to be good

= Thin objects (grass blades, etc.) have more gaps
than with high factor multisampling, but this is
expected (and can be fixed to a degree)

AMD\

Future Work

= Use more complex approximating functions for
better edge classification (edge detection)

= Handle cases of curved isolines

= Morph filter kernel shape based on isoline curvature
(approximating function parameters and/or
approximation error)

= Sample patterns improvement
= Try to apply this to upscaling
Image semantics problems need to be solved

upscale ? oo
—_—

- N

AMD Y

Thank Youl!

= Acknowledgments:
Jeff Golds (AMD)
Futuremark
Tommti Systems

= Some additional implementation details will be
presented during the AMD talk in "Advances in Real-
Time Rendering in 3D Graphics and Games” at
SIGGRAPH Monday August 3

AMD\

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices,
Inc. in the United States and/or other jurisdictions. Other names used in this presentation are
for identification purposes only and may be trademarks of their respective owners.

©2009 Advanced Micro Devices, Inc. All rights reserved.

AMDZt

