
A Directionally Adaptive
Edge Anti-Aliasing Filter
Konstantine Iourcha

Jason Yang

Andrew Pomianowski

High Performance Graphics | August 2, 2009

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20092

Motivation

 Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

– Goal

 Improve primitive edge appearance (vs. “standard”
MSAA processing) using the same number of samples
and better software filtering algorithms

– Benefits

 Rendering time (sans post-processing) and memory
footprint stay the same

 Software filters can be easily modified if needed

– Constraints

 Needs to run in real-time on the same GPU as rendering

 Needs to use existing HW features (e.g., MSAA data)

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20093

Motivation

 Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

– Goal

 Improve primitive edges appearance (vs. “standard“
MSAA processing) using same number of samples and
better software post filtering algorithms

– Benefits

 Rendering time (sans postprocessing) and memory
footprint stay the same

 Software filters can be easily modified if needed

– Constrains

 Need to run in real-time on the same GPU as rendering

 Need to use existing HW features (no HW modification)

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20094

Motivation

 Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

– Goal

 Improve primitive edges appearance (vs. “standard“
MSAA processing) using same number of samples and
better software post filtering algorithms

– Benefits

 Rendering time (sans postprocessing) and memory
footprint stay the same

 Software filters can be easily modified if needed

– Constrains

 Need to run in real-time on the same GPU as rendering

 Need to use existing HW features (no HW modification)

No AA

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20095

Motivation

 Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

– Goal

– Goal

 Improve primitive edges appearance (vs. “standard“
MSAA processing) using same number of samples and
better software post filtering algorithms

– Benefits

 Rendering time (sans postprocessing) and memory
footprint stay the same

 Software filters can be easily modifie)

8x MSAA

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20096

Motivation

 Can we use the GPU’s shader processing power and
flexibility for better edge anti-aliasing (AA)?

– Goal

 Improve primitive edges appearance (vs. “standard“
MSAA processing) using same number of samples and
better software post filtering algorithms

– Benefits

 Rendering time (sans postprocessing) and memory
footprint stay the same

 Software filters can be easily modified if needed

– Constrains

 Need to run in real-time on the same GPU as rendering

 Need to use existing HW features (no HW modification)

Our New Filter

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20097

Contribution

 Developed an approach to edge AA using non-linear
filtering with significant quality improvements over
“standard” linear filters

 Developed a filtering algorithm feasible for real-time
rendering on the GPU by taking advantage of
existing MSAA data

 Implemented algorithms on the GPU

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20098

Outline

 MSAA overview

 Prior and parallel work

 Algorithm overview

 Implementation and results

 Future work

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 20099

Multisample Anti-Aliasing (MSAA) [Akeley 1993]

 Estimate primitive pixel coverage by testing at
sample points

 Calculate a single color value per pixel per primitive
(usually at the center of the pixel or at the centroid
of the covered samples) and assign it to all covered
samples

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200910

MSAA Overview

 Speeds up rendering by not calculating values for
each sample separately

 Non-uniform sampling grid is used to improve pixel
coverage estimate, see also [Laine and Aila 2006]

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200911

MSAA Overview

 Primary goal is anti-aliasing of primitive and Z edges

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200912

MSAA Overview

 Texture resampling performed elsewhere
(mipmapping)

– High frequency texture details are lost in the MSAA color
buffer and cannot be easily post-processed further

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200913

Prior Work - AA

 Edge anti-aliasing research has more then 30 years
history (see references in the paper)

– Most algorithms use simple integration over pixel area

 More relevant are

– [Deering and Naegle 2002]

 Uses a wider kernel resolve filter in HW, but still linear

 Some blurring across the edge

– [Lau 2003]

 Post-processing with non-linear filter, 5x5 pixel area

 Does not use sub-pixel sample information

 Table grows exponentially with the size of the sampling
neighborhood; might be expensive on the GPU as it is

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200914

Parallel Work – Image Upscaling

 Huge amount of work, but little can be adopted

 Similar, but not the same problem

– 2x upsampling has ¼ sample/target pixel density

– AA has 8 sample/pixel density

 Common issues adapting upsampling algorithms

– Good processing of near 45° edges is most important,
(near) horizontal/vertical is less important

 It is exactly the opposite in the AA situation

– Not the best at handling high contrast edges
(modulation/blurring) (see also [Su and Willis 2004])

– Designed explicitly around Cartesian grids

– Naïve scaling to 72+ sample area often is not feasible

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200915

Parallel Work – Image Upscaling

 More relevant to our work

– Isolines/ isophote based [Wang and Ward 2007]

 Too complex, difficult to implement for our purposes

– Data dependant triangulation [Yu, Morse, and
Sederberg 2001]

 Fairly universal

 Very difficult to implement on GPU

 Requires triangulation structure which supports flips

 Indirect inspiration for our work

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200916

Design Approach for the New AA Filter

 Use intensity isolines rather than intensity itself

 Do not evaluate isolines explicitly

– Use interpolants or approximating functions instead;
simple ones can work

 Do not evaluate edge subpixel position explicitly

 Avoid complex structures

 Avoid big tables

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200917

Anti-Aliasing Model Revisited

 If we consider a single channel (gray-scale) image
as an intensity function over continuous [x, y]

– Pixel value can be computed by integrating the
intensity over the pixel area [Catmull 1978]

– Minimizes RMS error when a box filter (LCD display) is
used for reconstruction

– Some Moiré patterns can be visible due to high
frequency leakage; they can be reduced by a low pass
prefilter

 Standard MSAA computes an estimate of this
integration over the pixel

 We want to improve this estimate

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200918

Integration Approach and Isolines

 If we know isolines (isophotes) of the image function

– Sample values outside of the pixel can be used

– Weight them by the length of the corresponding
isoline segment in the pixel and add all of them

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200919

Integration Approach and Isolines

 If we know isolines (isophotes) of the image function

– Sample values outside of the pixel can be used

– Weight them by the length of the corresponding
isoline segment in the pixel and add all of them

– This works regardless of an edge presence (assuming
“more or less” uniform sampled isoline distribution)

– Will work for complex isoline topologies (unless
isolines are inside a single pixel), but we do not handle
this at the moment

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200920

Isoline Evaluation

 Need to find isolines

– But only in the case of low isoline curvature (as this is
the case near the actual primitive edges)

– Then we can model them as a straight lines

– And try to approximate our function with an extrusion
surface

v = [x, y], g is a fixed vector collinear to a local
gradient

– The biggest simplification would be to use a plane as
an approximation

 Still will estimate the local gradient

vgfvf ,
~

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200921

Isoline Evaluation

g

y

x

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200922

Linear Fitting In The Case of Three Channels
(“Gradient” Estimate)

 Use linear approximation

 Solve least squares problem to minimize

over RGB vectors C0, C1, and 2D vector g

 This approach works as locally R,G,B correlate well
(compare with S3TC); C1 is maximum correlation
vector in RGB space and C0 is mean color value

 Better than using just the luma channel as chromatic
edges are taken into account too

 Note: g is not a really a gradient in 3 channel case

Ii

ii vfCvgCF
2

01 ,

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200923

Filter Computation (Integration)

 Construct a square around
the pixel, with two sides
orthogonal to g

 Extend in the direction
orthogonal to g until it
meets the 3x3 pixel
boundary

 The inscribed length of the
line passing though sample
vi and orthogonal to g is its
weight wi

 Calculate the weighted sum
of all samples in the
rectangle

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200924

Thresholding

 Need to exclude g =0 cases

 Need to exclude pixels with high isoline curvature
from the filtering above and use “standard” resolve

– Avoids excessive corner smoothing

– Reduces processing time

– Threshold value is application dependent

 Based on how well the variance of the original
function is preserved by the linear function
approximation in the 3x3 pixel region

– Threshold cannot be “too tight”, as it will reject step
functions (edges)

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200925

Thresholding

x

In
te

n
s
it
y

x
In

te
n
s
it
y

Ambiguous Case Edge Case

Linear
Approximation

Linear
Approximation

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200926

Thresholding and Step Functions (Edges)

 The fitting and thresholding using a step function as
an approximation is possible

– Would provide more reliable edge detection

– Would cost much more to implement because different
positions of the step function discontinuity line among
samples need to be tested separately

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200927

Masking

 Similar purpose as thresholding

 If a pixel has two or more samples with different
colors it is an “edge” pixel, otherwise it is “non-
edge”

– “Internal” primitive pixels will have samples all of the
same color due to MSAA (some edges can generate
such pixels too; we ignore this)

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200928

Masking

 We use “edge” (X) / “non-edge” (O) 3x3 pixel
patterns to eliminate cases where filtering should
not be performed. (Compare with [Lau 2003])

– “Accept” patterns:

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200929

Masking

 For instance, if all 3x3 pixels are “edge” ones, there
is no long dominating edge, and we do not want to
smooth-out high-frequency in this case, etc.

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200930

Masking

After Masking“Found” Edges

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200931

Bringing It All Together:
Sample Implementation

 Four shader passes implemented using DirectX 10.1

 Pass 1: Identify edge pixels using the MSAA buffer.
Seed the frame buffer by performing a standard
resolve at each pixel

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200932

Pass 2

 Mask out candidate pixels using edge patterns

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200933

Pass 3

 Compute “gradients”

 Perform thresholding to further eliminate pixels

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200934

Pass 4

 Calculate the final frame buffer color for the pixels
from Pass 3 using the presented integration method
with input samples from a 3x3 pixel neighborhood

 Integration and weights are computed in shader

 All other pixels were already filtered in Pass 1

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200935

Performance Results

 Shipping as a driver feature on ATI Radeon HD
GPUs: Edge-Detect Custom Filter AA since 2007

 Filtering performance on scenes from Futuremark
3DMark03 using an ATI Radeon HD 4890 on an AMD
Phenom II X4 3.0 GHz

– 0.25 to 1.7 ms at 800x600

– 0.5 to 3 ms at 1024x768

– 1 to 5 ms at 1280x1024

 Performance dependent on the number of edges in
the scene

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200936

Quality

4x AA

New filter
using 4x AA

samples

8x AA

New filter
using 8x AA

samples

4 levels of gradation

10 levels of gradation

8 levels of gradation

22 levels of gradation

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200937

Quality (“Corner Smoothing”)

8x AA

New filter
using 8x AA

samples

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200938

Results Evaluation

 We did not run any numerical error evaluations, as it
is not clear how they can be interpreted

 No apparent temporal artifacts; temporal artifacts
are difficult to characterize numerically

 Numerous reviewers evaluated productized version
and found visual results to be good

 Thin objects (grass blades, etc.) have more gaps
than with high factor multisampling, but this is
expected (and can be fixed to a degree)

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200939

Future Work

 Use more complex approximating functions for
better edge classification (edge detection)

 Handle cases of curved isolines

 Morph filter kernel shape based on isoline curvature
(approximating function parameters and/or
approximation error)

 Sample patterns improvement

 Try to apply this to upscaling

– Image semantics problems need to be solved

?upscale

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200940

Thank You!

 Acknowledgments:

– Jeff Golds (AMD)

– Futuremark

– Tommti Systems

 Some additional implementation details will be
presented during the AMD talk in “Advances in Real-
Time Rendering in 3D Graphics and Games” at
SIGGRAPH Monday August 3rd

| A Directionally Adaptive Edge Anti-Aliasing Filter| August 2, 200941

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices,
Inc. in the United States and/or other jurisdictions. Other names used in this presentation are

for identification purposes only and may be trademarks of their respective owners.

©2009 Advanced Micro Devices, Inc. All rights reserved.

