
Stream

Compaction

for

Deferred

Shading

Jared Hoberock*

Victor Lu

Yuntao Jia

John C. Hart

UPCRC

University of Illinois

(*now at NVIDIA)

Our Contribution

• Shading requests from rasterization are spatially coherent

• Less so when shading is deferred until after rasterization

• Shading requests from ray tracers are spatially incoherent

• Neighboring processes need to run completely different shaders

• Shading requests can be deferred and batch processed

• SIMD processing of incoherent shading batches suffers

from control flow divergence

• Is it worth clustering shading requests into coherent

batches to avoid SIMD divergence?

1

Previous Work

• Memory Coherence for Out-of-Core Processing

[Pharr et al. 1997]

• Encouraged memory coherence within intersection jobs whereas

we encourage instruction coherence within shading jobs

• Ray-Hierarchy Traversal

• Mannson et al. [2007] measured divergence

• Wald et al. [2007] simulated compaction to avoid divergence

• Dynamic Warp Formation [Fung et al. 2007]

• Local re-ordering hardware v. global re-ordering software

• Load Balancing [Aila & Laine 2009]

• Ray tracing is a scheduling problem

2

Data Parallel Architectures

• MIMD “cores”

• Each core has its own

instruction counter

• Cell:8, GT200:30, LRB:32

• SIMD vector processors

• Lanes share same

instruction counter

• Cell:4, GT200:8, LRB:16

• Programmer may see even

wider degree of SIMD parallelism

• NVIDIA’s 32-wide “warps”

SIMD

Lane

Core

SIMD Divergence: Conceptual

4

X?

A B

TFFT TFTF

ABBA ABAB

Test X

Execute A or B

SIMD Divergence: Actual

5

X?

A B

TFFT TFTF

Mask on X

AAAA AAAA

Execute Both A and B

BBBB BBBB

ABBA ABAB

SIMD Divergence: Measurement

6

TFFT TFTF

Mask on X

ABBA ABAB

Efficiency =

#A |A| + #B |B|

(#A + #B)(|A|+|B|)

Useful Work

Total Effort
AAAA AAAA

Execute Both A and B

BBBB BBBB
=

1

1

min(,1)

n

i i

i

n

i i

i

n A

N n A

Shading Efficiency in a Path Tracer

7

1st Hit: 98% Efficient 2nd Hit: 56% Efficient

3rd Hit: 52% Efficient 4th Hit: 54% Efficient

Recovering Coherence

TFFT TFTF

TTTT FFFF

AAAA BBBB

ABBA ABAB

Test X

Compact

Evaluate A or B

Scatter result

Recovering Coherence

TFFT TFTF

TTTT FFFF

AAAA BBBB

ABBA ABAB

Efficiency =

(A | B)

(A | B) + compact

Stream Compaction

• Compacting disorganized input

10

Stream Compaction

• Compacting disorganized input

1. Select orange token

11

0001 1000 1000 0010

Stream Compaction

• Compacting disorganized input

1. Select orange token

2. Prefix Sum

12

0001 1000 1000 0010

1110 1111 2222 4433

Stream Compaction

• Compacting disorganized input

1. Select orange token

2. Prefix Sum

3. Scatter

13

0001 1000 1000 0010

1110 1111 2222 4433

Stream Compaction

• Compacting disorganized input

1. Select orange token

2. Prefix Sum

3. Scatter

14

0001 1000 1000 0010

1110 1111 2222 4433

Scan: M*O(N)

[Sengupta et al. 2007]

Radix Sort: log(M)*O(N)

[Satish et al. 2009]

Shader Scheduling

• Implicit Serialization

• (Big Switch)

• Let hardware schedule

• Explicit Serialization

• Run only jobs w/same shader at a time

• Compact + Imp/Exp Serialization

• Radix Sort + Imp/Exp Serialization

• Local Bitonic Sort + Imp Ser.

• Local to a CUDA thread block

• Global loads coalesce

15

forall j in jobs in SIMD do

switch j do

case s1:

execute(s1)

…

case sM:

execute(sM)

forall s in shaders do

mask = select(s,jobs)

forall (m,j) in (mask,jobs)

in SIMD do

if m then execute(s)

Implemented in CUDA

on G80-class hardware

Results

16

3 simple shaders

19% slower on GX2

5% slower on GTX+

unscheduled scheduled

Results

17

6 simple shaders

14% faster on GX2

38% faster on GTX+

Results

18

2 simple & 2 proc. shaders

2.4x faster on GX2

2.7x faster on GTX+

Results

19

3 simple & 2 proc. shaders

3.2x faster on GX2

3.5x faster on GTX+

Results

20

11 moderate shaders

23% faster on GX2

51% faster on GTX+

Scaling

9800GX2 9800GTX+

“Cores” 2x16 (we used 16) 16

Processor Clock 1.50 GHz 1.84 GHz (23%)

Memory Clock 1 GHz 1.1 GHz (10%)

Bandwidth 64 GB/s 70.4 GB/s (10%)

Bus Width 2x256 bit (we used 256) 256 bit

21

• Difference between processor clock scaling and memory

bandwidth scaling enhances benefits of shader compaction

• Compaction further leverages increased processor speed

Analysis

• Coherent shading time is always smaller

• But cost of overhead not always worth it for simple cases

• Shader Complexity

• Simple – No improvement, but little penalty

• Procedural – Large improvements

• Implicit versus Explicit Serialization

• With compaction, explicit almost always wins

• Large penalties for explicit with unordered input

• Local compaction was never successful

• Too much local data movement

• Limited working set size

22

Conclusions

• Global stream compaction is almost always a win

• Surprising positive results for our toy scenes

• Production renderers will require stream compaction to

be tractable in large scenes of arbitrary shading

complexity

Future work

• Data sensitive scheduling to avoid memory divergence

• Hybrid shader batch approaches

• Scheduling in both space and time

23

Acknowledgments

• Thanks to Shubho Sengupta & Mark Harris for making

their fast CUDA compaction primitives available in

CUDPP, and Nathan Bell for GPU radix sort

• This work was funded by the Intel & Microsoft as part of

the Illinois Universal Parallel Computing Research

Center

24

