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Our Contribution

• Shading requests from rasterization are spatially coherent

• Less so when shading is deferred until after rasterization

• Shading requests from ray tracers are spatially incoherent

• Neighboring processes need to run completely different shaders

• Shading requests can be deferred and batch processed

• SIMD processing of incoherent shading batches suffers 

from control flow divergence

• Is it worth clustering shading requests into coherent 

batches to avoid SIMD divergence?
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Previous Work

• Memory Coherence for Out-of-Core Processing

[Pharr et al. 1997]

• Encouraged memory coherence within intersection jobs whereas 

we encourage instruction coherence within shading jobs

• Ray-Hierarchy Traversal

• Mannson et al. [2007] measured divergence

• Wald et al. [2007] simulated compaction to avoid divergence

• Dynamic Warp Formation [Fung et al. 2007]

• Local re-ordering hardware v. global re-ordering software

• Load Balancing [Aila & Laine 2009]

• Ray tracing is a scheduling problem
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Data Parallel Architectures

• MIMD “cores”

• Each core has its own

instruction counter

• Cell:8, GT200:30, LRB:32

• SIMD vector processors

• Lanes share same

instruction counter

• Cell:4, GT200:8, LRB:16

• Programmer may see even

wider degree of SIMD parallelism

• NVIDIA’s 32-wide “warps”

SIMD

Lane

Core



SIMD Divergence: Conceptual
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SIMD Divergence: Actual
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SIMD Divergence: Measurement
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Shading Efficiency in a Path Tracer
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1st Hit: 98% Efficient 2nd Hit: 56% Efficient

3rd Hit: 52% Efficient 4th Hit: 54% Efficient



Recovering Coherence
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Recovering Coherence
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Stream Compaction

• Compacting disorganized input
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Stream Compaction

• Compacting disorganized input

1. Select orange token
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Stream Compaction

• Compacting disorganized input

1. Select orange token

2. Prefix Sum
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Stream Compaction

• Compacting disorganized input

1. Select orange token

2. Prefix Sum

3. Scatter
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Stream Compaction

• Compacting disorganized input

1. Select orange token

2. Prefix Sum

3. Scatter

14

0001 1000 1000 0010

1110 1111 2222 4433

Scan: M*O(N)

[Sengupta et al. 2007]

Radix Sort: log(M)*O(N)

[Satish et al. 2009]



Shader Scheduling

• Implicit Serialization

• (Big Switch)

• Let hardware schedule

• Explicit Serialization

• Run only jobs w/same shader at a time

• Compact + Imp/Exp Serialization

• Radix Sort + Imp/Exp Serialization

• Local Bitonic Sort + Imp Ser.

• Local to a CUDA thread block

• Global loads coalesce
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forall j in jobs in SIMD do

switch j do

case s1:

execute(s1)

…

case sM:

execute(sM)

forall s in shaders do

mask = select(s,jobs)

forall (m,j) in (mask,jobs)

in SIMD do

if m then execute(s)

Implemented in CUDA

on G80-class hardware



Results
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3 simple shaders

19% slower on GX2

5% slower on GTX+

unscheduled scheduled



Results
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6 simple shaders

14% faster on GX2

38% faster on GTX+



Results
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2 simple & 2 proc. shaders

2.4x faster on GX2

2.7x faster on GTX+



Results
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3 simple & 2 proc. shaders

3.2x faster on GX2

3.5x faster on GTX+



Results
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11 moderate shaders

23% faster on GX2

51% faster on GTX+



Scaling

9800GX2 9800GTX+

“Cores” 2x16 (we used 16) 16

Processor Clock 1.50 GHz 1.84 GHz (23%)

Memory Clock 1 GHz 1.1 GHz (10%)

Bandwidth 64 GB/s 70.4 GB/s (10%)

Bus Width 2x256 bit (we used 256) 256 bit
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• Difference between processor clock scaling and memory 

bandwidth scaling enhances benefits of shader compaction

• Compaction further leverages increased processor speed



Analysis

• Coherent shading time is always smaller

• But cost of overhead not always worth it for simple cases

• Shader Complexity

• Simple – No improvement, but little penalty

• Procedural – Large improvements

• Implicit versus Explicit Serialization

• With compaction, explicit almost always wins

• Large penalties for explicit with unordered input

• Local compaction was never successful

• Too much local data movement

• Limited working set size
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Conclusions

• Global stream compaction is almost always a win

• Surprising positive results for our toy scenes

• Production renderers will require stream compaction to 

be tractable in large scenes of arbitrary shading 

complexity

Future work

• Data sensitive scheduling to avoid memory divergence

• Hybrid shader batch approaches

• Scheduling in both space and time
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