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Shadow Rays

• Shadow rays are often time consuming

• Intersection (isect) required with lots of triangles

vs

Triangles

vs

Volumetric Occluders and Triangles

Baseline

Our approach
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Ray Tracing and Shadows

• Goal: faster shadows without modifying result

• 50% reduction in time spent on shadow rays

• Identical images

Baseline Our approach
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What is a Volumetric Occluder?

• An axis aligned bounding box within the mesh interior

• Kd-tree nodes used to represent volumetric occluders
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Outline
1. Create volumetric occluders

2. Modify kd-tree traversal to use volumetric occluders

• Two novel algorithms

3. Reuse volumetric occluders

4. Results

• Monte Carlo soft shadows
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One prerequisite: Manifold mesh

• Input mesh must be manifold

• Watertight

• Consistent face orientation 

• No self intersections
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Example: Oval mesh

mesh kd-split

• Normal build – SAH
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Classification

• For each leaf node in kd-tree, classify as:

• Boundary node – non-empty

• Opaque node – empty and inside

• Clear node – empty and outside
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Classifying the oval mesh

clearopaqueboundary

• Classification is easy on manifold mesh

• Opaque nodes are volumetric occluders
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But are they useful?

• Intersection with a volumetric occluder implies 
intersection with mesh geometry provided:

• At least one ray endpoint is outside of the mesh

• Volumetric occluders accelerate shadow rays

• Cheap to isect

• Often larger – better occlusion
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One major problem

• Volumetric occluders are inaccessible under normal 
kd-tree traversal order!

Standard Ray Order



11

Modifying kd-tree traversal to use 
volumetric occluders

• We present two ways to modify kd-tree traversal order

• Goal: encounter volumetric occluders during traversal

• Both solutions perform the same task at different cost

• Both solutions enable encountering volumetric 
occluders during traversal

• Intersection becomes a bit-mask and compare
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Traversal Mod 1: Extended Ray Order

• Extend the ray past boundary nodes

• Defer geometry isect using Deferment List

Extended Ray Order

Node A
Deferment List

Node A
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Extended Ray Order Summary

• Speculatively take extra traversal steps

• If speculation pays off, we encounter a volumetric 
occluder
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Extended Ray Order Expected Behavior

+ High chance geometry isects decrease

– Traversal steps guaranteed to increase
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Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue
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Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

0
0
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Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

1
0

1
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Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

2, 3
0

1

2 3
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Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

3, 4, 5
0

1

2

4 5

3
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Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

4, 5, 6
0

1

2

4 5 6

3
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Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

5, 6, 7
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1

2

4
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5 6

3
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Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

6, 7, 8
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Traversal Mod 2: QDBFS

• Quick descent bread-first search (QDBFS)

• Immediately descend in one child case

QDBFS Order
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BFS Order

Nodes visited: 9
Pushes: 10
Pops: 8

Nodes visited: 9
Pushes: 8
Pops: 4
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Quick descent

• Can discover volumetric occluders sooner

QDBFS Order
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Pops: 7

Nodes visited: 7
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Pops: 3
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BFS and QDBFS Summary

• BFS

• Finds large volumetric occluders

• QDBFS

• Less queue traffic

• 15% - 20% faster than BFS

• QDBFS will be used for rest of talk
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QDBFS Expected Behavior

+ High chance geometry isects decrease

+ Traversal steps may decrease

– Traversal steps may increase

+  Preference for large occluders
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Volumetric occluder intersection

• Very, very cheap

• Volumetric occ. tag stored in flag bits in the kd-node

• Intersection leverages all work from kd-tree traversal
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Reusing volumetric occluders

• The volumetric occluder cache (VC)

• Software managed

• Stores most recently used occluders

• Populate

• Lookup
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Volumetric occluder cache tradeoffs

+ Traversal steps very likely to decrease

• On a cache hit, traversal steps drops to 0

– May perform unnecessary bounding box isects

• If cache is size n, each cache miss costs n isects

• In our experience, the VC always improved run-times
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Results

• 4-wide packet tracer

• 1024 x 1024,  5 area lights, ~100 mil shadow rays

Armadillo 346 k

Bunny 70 k

Dragon 871 k

Rose 326 k

Yeah Right 119 k

Cowboy 7 k
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Run-Time
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Triangle Intersections
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Traversal Steps
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Simple shadows should be cheap

• Our approach: compute cheaper shadows for models 
that have simple (coherent) shadows

Simple Complex
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Yeah Right failure case

• Shadow has little coherency

• Shadow plagued by silhouette

Baseline Our approach
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New bottleneck: Unoccluded shadow rays

Two types of shadow rays

1. occluded - hits some object

2. unoccluded - hits no objects

Time Baseline
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Extensions

• This work: controlled environment

• Future work

• Realistic object configurations

• Realistic lighting configurations
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Summary

• Volumetric occluders provide an opportunity to accel. shadow rays

• Two new kd-tree traversal algorithms

• Up to 50% reduction in time spent on shadow rays

• In failure cases, performance degradation is graceful

• Produces identical images

• Applies to any type of query on binary visibility
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Finally… free stuff!

SpiderMind System Library available

http://triangle.csres.utexas.edu/gps/downloads/

Thank You!
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Previous Work

Create volumetric occluders using kd-tree nodes

• Inexpensive proxy in an accel. structure

• Wald et al. 2004 – massive models

• Yoon et al. 2006 – R-LOD

• Lacewell et al. 2008 – transmissive aggregate geom.

• Exact volumetric data (closely related)

• Woo and Amanatides 1990 – voxel occlusion testing

• Schaufler et al. 2000 – occluder fusion

• Reshetov et al. 2005 – MLRTA
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Classifying kd-nodes

For a given leaf node In the kd-tree:

• If the node has geometry, we are done, it is a 
BOUNDARY node

• If the node is empty:

• Cast a test ray, origin at node center, any direction

• If the test ray hits a back-facing polygon
• Node is inside mesh, node is OPAQUE

• If the test ray hits a front-facing polygon or nothing
• Node is outside mesh, node is CLEAR
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Illustration of classification

clearopaqueboundary

• Manifold mesh guarantees results are well-defined



45

Size of the deferment list

• Increase in size usually led to increased performance

• Best performance at size 512 (!)

• Why is this the best policy?

• Theory: it maximizes # of volumetric occlusions

• VC no longer affects # of triangle isects



46

Another look: shadow ray rate

• In units of megarays / sec

• Up to a 2x improvement

• Worst case still OK

• Single-ray within 2%

Scene base vol occ

Armadillo 7.2 13.1

Bunny 6.4 10.7

Dragon 6.0 12.2

Rose 11.6 15.0

Yeah Right 6.8 6.8

Cowboy 16.2 17.9
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kd-Node to bounding box lookup table

• Volumetric occluders are added to the cache when 
they are hit during traversal

• Problem: the bounds of the volumetric occluder are not 
known at traversal time

• Solution: precompute the lookup table as a preprocess, 
use it to lookup the bounds at run-time
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Cowboy failure case

• Volumetric occluders perform well when:

• Internal volume is large and expansive

• Mesh tessellation rate is high

• For Cowboy, the ratio is poor

• Internal volume is too small compared to tessellation rate
Scene v.o. SA / geom SA
Armadillo 45
Bunny 18
Dragon 36
Rose 11
Yeah Right 9.6
Cowboy 9.6
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