
Accelerating Shadow Rays Using Volumetric Occluders
and Modified kd-Tree Traversal

Peter Djeu*, Sean Keely*, and Warren Hunt‡

* University of Texas at Austin ‡ Intel Labs

Shadow Rays

• Shadow rays are often time consuming

• Intersection (isect) required with lots of triangles

vs

Triangles

vs

Volumetric Occluders and Triangles

Baseline

Our approach

2

Ray Tracing and Shadows

• Goal: faster shadows without modifying result

• 50% reduction in time spent on shadow rays

• Identical images

Baseline Our approach

3

What is a Volumetric Occluder?

• An axis aligned bounding box within the mesh interior

• Kd-tree nodes used to represent volumetric occluders

4

Outline
1. Create volumetric occluders

2. Modify kd-tree traversal to use volumetric occluders

• Two novel algorithms

3. Reuse volumetric occluders

4. Results

• Monte Carlo soft shadows

5

One prerequisite: Manifold mesh

• Input mesh must be manifold

• Watertight

• Consistent face orientation

• No self intersections

6

Example: Oval mesh

mesh kd-split

• Normal build – SAH

7

Classification

• For each leaf node in kd-tree, classify as:

• Boundary node – non-empty

• Opaque node – empty and inside

• Clear node – empty and outside

8

Classifying the oval mesh

clearopaqueboundary

• Classification is easy on manifold mesh

• Opaque nodes are volumetric occluders

9

But are they useful?

• Intersection with a volumetric occluder implies
intersection with mesh geometry provided:

• At least one ray endpoint is outside of the mesh

• Volumetric occluders accelerate shadow rays

• Cheap to isect

• Often larger – better occlusion

10

One major problem

• Volumetric occluders are inaccessible under normal
kd-tree traversal order!

Standard Ray Order

11

Modifying kd-tree traversal to use
volumetric occluders

• We present two ways to modify kd-tree traversal order

• Goal: encounter volumetric occluders during traversal

• Both solutions perform the same task at different cost

• Both solutions enable encountering volumetric
occluders during traversal

• Intersection becomes a bit-mask and compare

12

Traversal Mod 1: Extended Ray Order

• Extend the ray past boundary nodes

• Defer geometry isect using Deferment List

Extended Ray Order

Node A
Deferment List

Node A

13

Extended Ray Order Summary

• Speculatively take extra traversal steps

• If speculation pays off, we encounter a volumetric
occluder

14

Extended Ray Order Expected Behavior

+ High chance geometry isects decrease

– Traversal steps guaranteed to increase

15

Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

16

Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

0
0

17

Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

1
0

1

18

Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

2, 3
0

1

2 3

19

Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

3, 4, 5
0

1

2

4 5

3

20

Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

4, 5, 6
0

1

2

4 5 6

3

21

Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

5, 6, 7
0

1

2

4

7

5 6

3

22

Intro to Traversal Mod 2: BFS

• Breadth-first search (BFS)

• Shallow nodes are visited before deep ones

• Code change: Stack Queue

BFS Order

Queue

6, 7, 8
0

1

2

4

7 8

5 6

3

23

Traversal Mod 2: QDBFS

• Quick descent bread-first search (QDBFS)

• Immediately descend in one child case

QDBFS Order

0

1

2

4

7 8

5 6

3

0

1

2

5

6 8

7 4

3

BFS Order

Nodes visited: 9
Pushes: 10
Pops: 8

Nodes visited: 9
Pushes: 8
Pops: 4

24

Quick descent

• Can discover volumetric occluders sooner

QDBFS Order

0

1

2

4

7

5 6

3

0

1

2

5

6

4

3

BFS Order

Nodes visited: 8
Pushes: 10
Pops: 7

Nodes visited: 7
Pushes: 6
Pops: 3

25

BFS and QDBFS Summary

• BFS

• Finds large volumetric occluders

• QDBFS

• Less queue traffic

• 15% - 20% faster than BFS

• QDBFS will be used for rest of talk

26

QDBFS Expected Behavior

+ High chance geometry isects decrease

+ Traversal steps may decrease

– Traversal steps may increase

+ Preference for large occluders

27

Volumetric occluder intersection

• Very, very cheap

• Volumetric occ. tag stored in flag bits in the kd-node

• Intersection leverages all work from kd-tree traversal

28

Reusing volumetric occluders

• The volumetric occluder cache (VC)

• Software managed

• Stores most recently used occluders

• Populate

• Lookup

29

Volumetric occluder cache tradeoffs

+ Traversal steps very likely to decrease

• On a cache hit, traversal steps drops to 0

– May perform unnecessary bounding box isects

• If cache is size n, each cache miss costs n isects

• In our experience, the VC always improved run-times

30

Results

• 4-wide packet tracer

• 1024 x 1024, 5 area lights, ~100 mil shadow rays

Armadillo 346 k

Bunny 70 k

Dragon 871 k

Rose 326 k

Yeah Right 119 k

Cowboy 7 k

31

Run-Time

0

2

4

6

8

10

12

14

16

18

Armadillo Bunny Dragon Rose YeahRight Cowboy

seconds

Ray Order Ext Ray Order QDBFS Ext Ray Order + VC QDBFS + VC

32

Triangle Intersections

0

50

100

150

200

250

Armadillo Bunny Dragon Rose YeahRight Cowboy

millions

Ray Order Ext Ray Order QDBFS Ext Ray Order + VC QDBFS + VC

33

Traversal Steps

0

100

200

300

400

500

600

700

Armadillo Bunny Dragon Rose YeahRight Cowboy

millions

Ray Order Ext Ray Order QDBFS Ext Ray Order + VC QDBFS + VC

34

Simple shadows should be cheap

• Our approach: compute cheaper shadows for models
that have simple (coherent) shadows

Simple Complex

35

Yeah Right failure case

• Shadow has little coherency

• Shadow plagued by silhouette

Baseline Our approach

36

New bottleneck: Unoccluded shadow rays

Two types of shadow rays

1. occluded - hits some object

2. unoccluded - hits no objects

Time Baseline

0%

25%

50%

75%

100%

Armadillo Bunny Dragon Rose Yeah Right Cowboy

occl
unoccl

Time QDBFS

0%

25%

50%

75%

100%

Armadillo Bunny Dragon Rose Yeah Right Cowboy

occl
unoccl

37

Extensions

• This work: controlled environment

• Future work

• Realistic object configurations

• Realistic lighting configurations

38

Summary

• Volumetric occluders provide an opportunity to accel. shadow rays

• Two new kd-tree traversal algorithms

• Up to 50% reduction in time spent on shadow rays

• In failure cases, performance degradation is graceful

• Produces identical images

• Applies to any type of query on binary visibility

39

Acknowledgements

• Bill Mark

• Graphics and Parallel Systems Lab (UT Austin)

• Modelers, especially Techland

• Intel Corporation

40

Finally… free stuff!

SpiderMind System Library available

http://triangle.csres.utexas.edu/gps/downloads/

Thank You!

41

42

Previous Work

Create volumetric occluders using kd-tree nodes

• Inexpensive proxy in an accel. structure

• Wald et al. 2004 – massive models

• Yoon et al. 2006 – R-LOD

• Lacewell et al. 2008 – transmissive aggregate geom.

• Exact volumetric data (closely related)

• Woo and Amanatides 1990 – voxel occlusion testing

• Schaufler et al. 2000 – occluder fusion

• Reshetov et al. 2005 – MLRTA

43

Classifying kd-nodes

For a given leaf node In the kd-tree:

• If the node has geometry, we are done, it is a
BOUNDARY node

• If the node is empty:

• Cast a test ray, origin at node center, any direction

• If the test ray hits a back-facing polygon
• Node is inside mesh, node is OPAQUE

• If the test ray hits a front-facing polygon or nothing
• Node is outside mesh, node is CLEAR

44

Illustration of classification

clearopaqueboundary

• Manifold mesh guarantees results are well-defined

45

Size of the deferment list

• Increase in size usually led to increased performance

• Best performance at size 512 (!)

• Why is this the best policy?

• Theory: it maximizes # of volumetric occlusions

• VC no longer affects # of triangle isects

46

Another look: shadow ray rate

• In units of megarays / sec

• Up to a 2x improvement

• Worst case still OK

• Single-ray within 2%

Scene base vol occ

Armadillo 7.2 13.1

Bunny 6.4 10.7

Dragon 6.0 12.2

Rose 11.6 15.0

Yeah Right 6.8 6.8

Cowboy 16.2 17.9

47

kd-Node to bounding box lookup table

• Volumetric occluders are added to the cache when
they are hit during traversal

• Problem: the bounds of the volumetric occluder are not
known at traversal time

• Solution: precompute the lookup table as a preprocess,
use it to lookup the bounds at run-time

48

Cowboy failure case

• Volumetric occluders perform well when:

• Internal volume is large and expansive

• Mesh tessellation rate is high

• For Cowboy, the ratio is poor

• Internal volume is too small compared to tessellation rate
Scene v.o. SA / geom SA
Armadillo 45
Bunny 18
Dragon 36
Rose 11
Yeah Right 9.6
Cowboy 9.6

	Accelerating Shadow Rays Using Volumetric Occluders and Modified kd-Tree Traversal
	Shadow Rays
	Ray Tracing and Shadows
	What is a Volumetric Occluder?
	Outline
	One prerequisite: Manifold mesh
	Example: Oval mesh
	Classification
	Classifying the oval mesh
	But are they useful?
	One major problem
	Modifying kd-tree traversal to use 	 volumetric occluders
	Traversal Mod 1: Extended Ray Order
	Extended Ray Order Summary
	Extended Ray Order Expected Behavior
	Intro to Traversal Mod 2: BFS
	Intro to Traversal Mod 2: BFS
	Intro to Traversal Mod 2: BFS
	Intro to Traversal Mod 2: BFS
	Intro to Traversal Mod 2: BFS
	Intro to Traversal Mod 2: BFS
	Intro to Traversal Mod 2: BFS
	Intro to Traversal Mod 2: BFS
	Traversal Mod 2: QDBFS
	Quick descent
	BFS and QDBFS Summary
	QDBFS Expected Behavior
	Volumetric occluder intersection
	Reusing volumetric occluders
	Volumetric occluder cache tradeoffs
	Results
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Simple shadows should be cheap
	Yeah Right failure case
	New bottleneck: Unoccluded shadow rays
	Extensions
	Summary
	Acknowledgements
	Finally… free stuff!
	Slide Number 42
	Previous Work
	Classifying kd-nodes
	Illustration of classification
	Size of the deferment list
	Another look: shadow ray rate
	kd-Node to bounding box lookup table
	Cowboy failure case

