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Compact?

e Remove invalid elements
from an buffer

— Predicate determines
validity

— OQOutput: buffer containing
only valid elements
* Building block for parallel
algorithms
— Pack sparse output

— Parallel tree traversal and
building

— Parallel sorting




Previous Work

* Based on parallel prefix sums
— Blelloch et al. [1990], Chatterjee et al. [1990]
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‘ Evaluate Predicate => Flag Array ‘
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‘ Exclusive Prefix Sum ‘

0111 2 2/ 3 4 5 5 5 5 6 6 6,7 8

‘ Scatter/Gather Valid Elements ‘
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— Recent GPU implementation in CUDPP 1.1
e Sengupta et al [2007,2008]




Contributions

 Our implementation is

— 12x faster than
Geometry Shaders

CUDPP - 32 bit
—<— Geometry Shader
—©— Our - 32 bit

Our - 64 bit
—*— Our - 128 bit

— At |least 2.5x faster any

other implementation
we know of

Time (ms)

* Uses negligible amount
of extra storage

— Not in-place though

20M 30M 40M
Number of elements



Our view of a GPU

* Pvirtual processors
— Larger than the actual number of processors
— Used to facilitate latency hiding

e SIMD width of S
 Wide Memory Bus

— Generally need to access S consecutive elements
— No caches

* See paper for detailed explanation.



Actual Hardware

* Developed using an NVIDIA GTX280 GPU
— With the CUDA 2.1 API, updated for CUDA 2.2!

 We used the following settings:

— P =480 virtual processors
* 30 multiprocessors
e 4 warps per multiprocessor
* times 4 for latency hiding (empiric)

— S =32 (one warp)
e Coulduse S =16, 64, ...



Algorithm — General Idea

* Sequential algorithm — very simple
 Our approach
— Number of independent processors
— Large input set

= Apply sequential algorithm to many independent
pieces, and combine the results later



Algorithm : overview

l. Setup

* Have N input elements
—N>P

— Number of output
elements unknown

* Each processor:
— Assigned chunk of data
— Roughly equal size = N/P
* 0(1)
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Processor 0

Processor 1

Processor 2



Algorithm : overview

0
Il. Count Elements

* Each processor:
— count valid elements
* Independent chunks

— Each processor has its
owh data

= No synchronization
 O(N/(PS) + log S)

N-1
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Algorithm : overview

0

Ill. Find Offsets

* Find output offsets

— Prefix sum over the
element counts

Prefix Sum

#=2—»> =0

 Constant number, P, of
elements
— E.g. 480 in our
implementations

e Oflog P)

#=3—») =2
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Algorithm : overview

0

IV. Copy Elements
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* Each processor:

— Copy valid elements in
its chunk
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e Source and destination
known
= no synchronization

 O(N/(PS) x log S)
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SIMD compaction step

e Each iteration during compaction
— Load S = 32 consecutive elements

— Discard invalid elements
e E.g. prefix sum (or POPC) over S elements
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— Store remaining elements

* To CUDA shared memory
* To CUDA global memory (output array)



Analysis

 Complexity (number of steps):
— O(N/(PS) x log S + log P) ~ O(N)
 SIMD Width tradeoft:

— Large S — increases compute (/og S)

 j.e.if we pick S =1, P” = PS complexity is reduced to
O(N/P’ + log P’)

— Small S — worse memory access pattern
* |n CUDA: no coalesced memory reads

e S$=232turns out to be good (empiric)



Population Count - POPC

* Count set bits in a word
— Alternative to prefix sum in compaction step

— If implemented in hardware, we get rid of log(S)
factor

* Also need to broadcast result of predicate to
all lanes/threads
— Currently expensive in CUDA
— Also, POPC is not (yet?) a hardware instruction



Optimization : 64bit fetches

e Optimization : fetch 32bit data in 64bit units
— Increases bandwidth

— Hardware specific
— Limited to 32bit data

e Each iteration now handles 2 x 32 elements
— Pass-through bandwidths are:

m 32 bit fetches 64 bit fetches 128 bit fetches

Bandwidth (GB/s) 77.8 102.5 73.4
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Variations

e Several variants available
— Tradeoff: memory access vs. compute load

* Output

— Staged: as described. Valid elements are placed in
shared memory

— Scattered: bypasses compaction to shared
memory

— Buffered: accumulates S elements in shared
memory



Variations (contd.)

e Staging and buffering is not free
— Higher computational load
— On an GTX280: buffering never viable
— Sweeney: 1 byte / 1 op
= 1 op/ 1 byte. Address logic op = ordinary op
* Dynamically choose: staging or scattering
— Know ratio of valid elements from count
— Heuristic (=manually tweaked) threshold



Time (ms)

ariants — Comparison

Stream Compaction (4M elements — 32bit)
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Results

Time (ms)

CUDPP - 32 bit
—<— Geometry Shader
—©— Our - 32 bit

Our - 64 bit
—*— Our - 128 bit

20M 30M 40M
Number of elements

2.9x speedup vs. CUDPP

— 2.5x without computing
extra flags

Less auxiliary memory

— Order of P = 500
elements

We can compact 64bit

elements faster than

32bit in CUDPP

— 2x data



Bonus: Prefix Sum

e Easier than compaction

— Number of output
elements is equal to
inputs 35|

= perfect coalescing when z
reading and writing! g 25
* Results: 220M elements
— 32bit : 880Mbyte data |
Our

b 25.3mS 0.5} CUDPP | |
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Bonus: Radix Sort — Part A

e “Stream split” W
— Compaction that places =
! F s o 5 100t
invalid elements in 0 £
v oo SDK - RadixSort
second half of the e ——oupn
Output bUffer M eM 15“£Elen1§r:\ﬂs 20M 24 28M
* Radix Sort
— Apply stream split once EN .
for each bit in the key > F
> ——— SDK - RadixSort
. . Q g - ——— Our — Optimized
— Can optimize further S ——ou-pi

aMm 8M 12M 16M 20M 24M 28M

* “Plain” vs. “Optimized” ¥ Elements



Bonus: Radix Sort — Part B

Until yesterday (Sunday) this slide would claim
that we have the fastest Radix Sort

implementation.

However: “Scalable Split & Sort Primitives”

— Poster by Suryakart Patidav and P.J. Narayanan
here at HPG

seem to sort a few % faster.



Conclusions

e Efficient stream compaction

— Approx. 3x speedup vs. older implementations
— Handles 32bit, 64bit and 128 bit elements currently

* Configurable for newer hardware
— Different compute/memory tradeoffs

* Related algorithms
— Stream Split

— Radix Sort - fastestfor>500k-elements{=15%)
— Prefix Sum - fastest (~ 30%)
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