
Scan me to watch

our example videos!

Scan me to watch

our example videos!

Triangle bisection tessellation with fractional LOD for fast subdivision of triangle, quad

and isoline patches producing spatially and temporally smooth geometry

• Tessellation Factors (TFs) defined per vertex rather than per edge

• Fixed vertex UV coordinates for stable geometry

• Fractional tessellation supported through “Blending”

• No thin or redundant primitives produced

IntroDUction

Triangle bisection tessellation with fractional LOD for fast subdivision of triangle, quad

and isoline patches producing spatially and temporally smooth geometry

• Tessellation Factors (TFs) defined per vertex rather than per edge

• Fixed vertex UV coordinates for stable geometry

• Fractional tessellation supported through “Blending”

• No thin or redundant primitives produced

IntroDUction

We propose a fast and high quality tessellation scheme of low complexity requiring minimal

changes to the existing tessellation stages. By moving Tessellation Factors from domain edges to

their corners one eliminates the need for fanning of thin triangles. By fixing vertices in UV space

unstable geometry artefacts are removed. By continuously interpolating vertices between discrete

levels of detail smooth fractional tessellation is achieved. By subdividing triangle and quad

domains in the same fashion our method generalises to any polygonal domain making it more

versatile to the modelling process.

We propose a fast and high quality tessellation scheme of low complexity requiring minimal

changes to the existing tessellation stages. By moving Tessellation Factors from domain edges to

their corners one eliminates the need for fanning of thin triangles. By fixing vertices in UV space

unstable geometry artefacts are removed. By continuously interpolating vertices between discrete

levels of detail smooth fractional tessellation is achieved. By subdividing triangle and quad

domains in the same fashion our method generalises to any polygonal domain making it more

versatile to the modelling process.

ConcLUSion
We propose a fast and high quality tessellation scheme of low complexity requiring minimal

changes to the existing tessellation stages. By moving Tessellation Factors from domain edges to

their corners one eliminates the need for fanning of thin triangles. By fixing vertices in UV space

unstable geometry artefacts are removed. By continuously interpolating vertices between discrete

levels of detail smooth fractional tessellation is achieved. By subdividing triangle and quad

domains in the same fashion our method generalises to any polygonal domain making it more

versatile to the modelling process.

ConcLUSion

Text...Text...

Text...

Initial DoMAin SuBDIVisionInitial DoMAin SuBDIVisionInitial DoMAin SuBDIVision

Our tessellator takes as input a topology plus per-vertex TFs. Each TF is reduced (pseudo) log

base 2. The triangle/quad domain is subdivided into 3/4 initial triangle patches by adding a middle

vertex as the average of the corner vertices and reducing each TF by 0.5. In the following stage

the triangle patches are processed independently and identically. If none of the corner TFs of the

triangle domain exceeds 0 then no subdivision occurs to prevent over-tessellation.

Initial DoMAin SuBDIVision

Our tessellator takes as input a topology plus per-vertex TFs. Each TF is reduced (pseudo) log

base 2. The triangle/quad domain is subdivided into 3/4 initial triangle patches by adding a middle

vertex as the average of the corner vertices and reducing each TF by 0.5. In the following stage

the triangle patches are processed independently and identically. If none of the corner TFs of the

triangle domain exceeds 0 then no subdivision occurs to prevent over-tessellation.

Initial DoMAin SuBDIVision

Our tessellator takes as input a topology plus per-vertex TFs. Each TF is reduced (pseudo) log

base 2. The triangle/quad domain is subdivided into 3/4 initial triangle patches by adding a middle

vertex as the average of the corner vertices and reducing each TF by 0.5. In the following stage

the triangle patches are processed independently and identically. If none of the corner TFs of the

triangle domain exceeds 0 then no subdivision occurs to prevent over-tessellation.

FracTIOnal LOD CompARisONFracTIOnal LOD CompARisON

Our tessellation scheme

significantly improves on

DirectX’s fractional methods

by producing stable geometry

which is not affected by

higher frequencies in

attributes of the surface.

In contrast DirectX is known

to produce instability artefacts

when geometry changes

abruptly as vertices move in

UV space.

When tessellating higher

frequency surfaces DirectX

must either sacrifice detail

from the surface or over-

tessellate. Our proposal

remedies these issues.

FracTIOnal LOD CompARisON

Our tessellation scheme

significantly improves on

DirectX’s fractional methods

by producing stable geometry

which is not affected by

higher frequencies in

attributes of the surface.

In contrast DirectX is known

to produce instability artefacts

when geometry changes

abruptly as vertices move in

UV space.

When tessellating higher

frequency surfaces DirectX

must either sacrifice detail

from the surface or over-

tessellate. Our proposal

remedies these issues.

FracTIOnal LOD CompARisON

Our tessellation scheme

significantly improves on

DirectX’s fractional methods

by producing stable geometry

which is not affected by

higher frequencies in

attributes of the surface.

In contrast DirectX is known

to produce instability artefacts

when geometry changes

abruptly as vertices move in

UV space.

When tessellating higher

frequency surfaces DirectX

must either sacrifice detail

from the surface or over-

tessellate. Our proposal

remedies these issues.

Our proposed tessellation scheme supports

fractional levels of detail by “Blending”

newly added vertices. This means that each

newly added vertex lies in the tessellated

surface of the current integer LOD and

continuously changes into its final state in

the next integer LOD.

Continuity is achieved by interpolating

between the average of the edge-end

vertices and the final state of the newly

added vertex by a weight known as the

Blend Factor (BF).

The Blend Factor is a value between 0 and

1, is specified for each vertex by the

tessellator and is derived from the fractional

parts of the edge-end vertices.

Blending is performed on the attributes of

the post Domain Shader vertices.

By keeping UV coordinates of vertices fixed,

our technique ensures stable geometry for

fractional tessellation.

The left-hand diagram demonstrates the

process of Blending from the point that a

new vertex is added until it reaches its final

state.

BleNDing

Our proposed tessellation scheme supports

fractional levels of detail by “Blending”

newly added vertices. This means that each

newly added vertex lies in the tessellated

surface of the current integer LOD and

continuously changes into its final state in

the next integer LOD.

Continuity is achieved by interpolating

between the average of the edge-end

vertices and the final state of the newly

added vertex by a weight known as the

Blend Factor (BF).

The Blend Factor is a value between 0 and

1, is specified for each vertex by the

tessellator and is derived from the fractional

parts of the edge-end vertices.

Blending is performed on the attributes of

the post Domain Shader vertices.

By keeping UV coordinates of vertices fixed,

our technique ensures stable geometry for

fractional tessellation.

The left-hand diagram demonstrates the

process of Blending from the point that a

new vertex is added until it reaches its final

state.

BleNDing

Our proposed tessellation scheme supports

fractional levels of detail by “Blending”

newly added vertices. This means that each

newly added vertex lies in the tessellated

surface of the current integer LOD and

continuously changes into its final state in

the next integer LOD.

Continuity is achieved by interpolating

between the average of the edge-end

vertices and the final state of the newly

added vertex by a weight known as the

Blend Factor (BF).

The Blend Factor is a value between 0 and

1, is specified for each vertex by the

tessellator and is derived from the fractional

parts of the edge-end vertices.

Blending is performed on the attributes of

the post Domain Shader vertices.

By keeping UV coordinates of vertices fixed,

our technique ensures stable geometry for

fractional tessellation.

The left-hand diagram demonstrates the

process of Blending from the point that a

new vertex is added until it reaches its final

state.

BleNDing

Our proposed tessellation scheme supports

fractional levels of detail by “Blending”

newly added vertices. This means that each

newly added vertex lies in the tessellated

surface of the current integer LOD and

continuously changes into its final state in

the next integer LOD.

Continuity is achieved by interpolating

between the average of the edge-end

vertices and the final state of the newly

added vertex by a weight known as the

Blend Factor (BF).

The Blend Factor is a value between 0 and

1, is specified for each vertex by the

tessellator and is derived from the fractional

parts of the edge-end vertices.

Blending is performed on the attributes of

the post Domain Shader vertices.

By keeping UV coordinates of vertices fixed,

our technique ensures stable geometry for

fractional tessellation.

The left-hand diagram demonstrates the

process of Blending from the point that a

new vertex is added until it reaches its final

state.

BleNDing

Our proposed tessellation scheme supports

fractional levels of detail by “Blending”

newly added vertices. This means that each

newly added vertex lies in the tessellated

surface of the current integer LOD and

continuously changes into its final state in

the next integer LOD.

Continuity is achieved by interpolating

between the average of the edge-end

vertices and the final state of the newly

added vertex by a weight known as the

Blend Factor (BF).

The Blend Factor is a value between 0 and

1, is specified for each vertex by the

tessellator and is derived from the fractional

parts of the edge-end vertices.

Blending is performed on the attributes of

the post Domain Shader vertices.

By keeping UV coordinates of vertices fixed,

our technique ensures stable geometry for

fractional tessellation.

The left-hand diagram demonstrates the

process of Blending from the point that a

new vertex is added until it reaches its final

state.

BleNDing

ModiFIeD PipeliNE

The proposal adds one extra fixed

function stage to the tessellator

stages of the pipeline: the Blender.

This unit performs the Blending on

post Domain Shader vertices.

By moving Tessellation Factors

from patches to vertices we make

the Hull Shader an optional part of

the pipeline between the patch

assembly and the tessellator,

reserved for optional per-patch

work.

ModiFIeD PipeliNE

The proposal adds one extra fixed

function stage to the tessellator

stages of the pipeline: the Blender.

This unit performs the Blending on

post Domain Shader vertices.

By moving Tessellation Factors

from patches to vertices we make

the Hull Shader an optional part of

the pipeline between the patch

assembly and the tessellator,

reserved for optional per-patch

work.

Our proposal solves all major issues of current schemes.

In particular it has the following advantages over

DirectX’s edge based tessellation:

• More user-friendly vertex Tessellation Factors

• Very simple algorithm requiring minimal logic, with no

special cases

• Supports fractional LOD via Blending with no artefacts

• Stable geometry is ensured by the fixed UVs

• No thin or redundant primitives

• Spatially and temporally smooth geometry

• Generalises to any polygonal domain such as

hexagons or octagons

EvaLUAtiON

Our proposal solves all major issues of current schemes.

In particular it has the following advantages over

DirectX’s edge based tessellation:

• More user-friendly vertex Tessellation Factors

• Very simple algorithm requiring minimal logic, with no

special cases

• Supports fractional LOD via Blending with no artefacts

• Stable geometry is ensured by the fixed UVs

• No thin or redundant primitives

• Spatially and temporally smooth geometry

• Generalises to any polygonal domain such as

hexagons or octagons

EvaLUAtiON

Each initial and subsequent triangle patch is processed independently and identically by triangle

bisection. The example bisections above match the triangle patches from initial subdivision

marked in grey. A triangle patch comprises three UVs and three TFs, one for each corner vertex.

If either of the Tessellation Factors on the end of the longest edge (in domain space) exceeds 0

then subdivision occurs, otherwise the triangle patch forms a single primitive. When subdivision

occurs, a new vertex is added as the average of the vertices on the end of the bisected edge and

two new triangle patches are formed. Lastly, all Tessellation Factors are decreased by 0.5. The

same process is then repeated on the two new triangle patches until subdivision terminates.

TriANglE BisECTion

Each initial and subsequent triangle patch is processed independently and identically by triangle

bisection. The example bisections above match the triangle patches from initial subdivision

marked in grey. A triangle patch comprises three UVs and three TFs, one for each corner vertex.

If either of the Tessellation Factors on the end of the longest edge (in domain space) exceeds 0

then subdivision occurs, otherwise the triangle patch forms a single primitive. When subdivision

occurs, a new vertex is added as the average of the vertices on the end of the bisected edge and

two new triangle patches are formed. Lastly, all Tessellation Factors are decreased by 0.5. The

same process is then repeated on the two new triangle patches until subdivision terminates.

TriANglE BisECTion

TesSELlation PATteRns CoMPArisonTesSELlation PATteRns CoMPArison

Our new tessellation scheme (right) produces a range of patterns determined by per vertex TFs

rather than the per edge TFs of current schemes. Our proposal permits large steps in TFs without

resorting to triangle fanning unlike current methods, such as DirectX (left).

TesSELlation PATteRns CoMPArison

Our new tessellation scheme (right) produces a range of patterns determined by per vertex TFs

rather than the per edge TFs of current schemes. Our proposal permits large steps in TFs without

resorting to triangle fanning unlike current methods, such as DirectX (left).

TesSELlation PATteRns CoMPArison

Our new tessellation scheme (right) produces a range of patterns determined by per vertex TFs

rather than the per edge TFs of current schemes. Our proposal permits large steps in TFs without

resorting to triangle fanning unlike current methods, such as DirectX (left).

TRiANgLE bISeCTiON tESsELlATiON wITh
FRaCTiONaL VerTex LoDs Peter Smith-Lacey & Simon Fenney

+++

TRiANgLE bISeCTiON tESsELlATiON wITh
FRaCTiONaL VerTex LoDs Peter Smith-Lacey & Simon Fenney

+

Lab
s

Labs

https://www.youtube.com/watch?v=3CLTCgt1-gA
https://www.youtube.com/watch?v=3CLTCgt1-gA

	TriangleBisectionTessellation_v3.vsdx
	Poster

