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Triangle bisection tessellation with fractional LOD for fast subdivision of triangle, quad 

and isoline patches producing spatially and temporally smooth geometry

• Tessellation Factors (TFs) defined per vertex rather than per edge

• Fixed vertex UV coordinates for stable geometry

• Fractional tessellation supported through “Blending”

• No thin or redundant primitives produced
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We propose a fast and high quality tessellation scheme of low complexity requiring minimal 

changes to the existing tessellation stages. By moving Tessellation Factors from domain edges to 

their corners one eliminates the need for fanning of thin triangles. By fixing vertices in UV space 

unstable geometry artefacts are removed. By continuously interpolating vertices between discrete 

levels of detail smooth fractional tessellation is achieved. By subdividing triangle and quad 

domains in the same fashion our method generalises to any polygonal domain making it more 

versatile to the modelling process.
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Our tessellator takes as input a topology plus per-vertex TFs. Each TF is reduced (pseudo) log 

base 2. The triangle/quad domain is subdivided into 3/4 initial triangle patches by adding a middle 

vertex as the average of the corner vertices and reducing each TF by 0.5. In the following stage 

the triangle patches are processed independently and identically. If none of the corner TFs of the 

triangle domain exceeds 0 then no subdivision occurs to prevent over-tessellation.
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Our tessellation scheme 

significantly improves on 

DirectX’s fractional methods 

by producing stable geometry 

which is not affected by 

higher frequencies in 

attributes of the surface.

In contrast DirectX is known 

to produce instability artefacts

when geometry changes 

abruptly as vertices move in 

UV space.

When tessellating higher 

frequency surfaces DirectX 

must either sacrifice detail 

from the surface or over-

tessellate. Our proposal 

remedies these issues.
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Our proposed tessellation scheme supports 

fractional levels of detail by “Blending” 

newly added vertices. This means that each 

newly added vertex lies in the tessellated 

surface of the current integer LOD and 

continuously changes into its final state in 

the next integer LOD. 

Continuity is achieved by interpolating 

between the average of the edge-end 

vertices and the final state of the newly 

added vertex by a weight known as the 

Blend Factor (BF).

The Blend Factor is a value between 0 and  

1, is specified for each vertex by the 

tessellator and is derived from the fractional 

parts of the edge-end vertices.

Blending is performed on the attributes of 

the post Domain Shader vertices.

By keeping UV coordinates of vertices fixed, 

our technique ensures stable geometry for 

fractional tessellation.

The left-hand diagram demonstrates the 

process of Blending from the point that a 

new vertex is added until it reaches its final 

state.

BleNDing

Our proposed tessellation scheme supports 

fractional levels of detail by “Blending” 

newly added vertices. This means that each 

newly added vertex lies in the tessellated 

surface of the current integer LOD and 

continuously changes into its final state in 

the next integer LOD. 

Continuity is achieved by interpolating 

between the average of the edge-end 

vertices and the final state of the newly 

added vertex by a weight known as the 

Blend Factor (BF).

The Blend Factor is a value between 0 and  

1, is specified for each vertex by the 

tessellator and is derived from the fractional 

parts of the edge-end vertices.

Blending is performed on the attributes of 

the post Domain Shader vertices.

By keeping UV coordinates of vertices fixed, 

our technique ensures stable geometry for 

fractional tessellation.

The left-hand diagram demonstrates the 

process of Blending from the point that a 

new vertex is added until it reaches its final 

state.

BleNDing

Our proposed tessellation scheme supports 

fractional levels of detail by “Blending” 

newly added vertices. This means that each 

newly added vertex lies in the tessellated 

surface of the current integer LOD and 

continuously changes into its final state in 

the next integer LOD. 

Continuity is achieved by interpolating 

between the average of the edge-end 

vertices and the final state of the newly 

added vertex by a weight known as the 

Blend Factor (BF).

The Blend Factor is a value between 0 and  

1, is specified for each vertex by the 

tessellator and is derived from the fractional 

parts of the edge-end vertices.

Blending is performed on the attributes of 

the post Domain Shader vertices.

By keeping UV coordinates of vertices fixed, 

our technique ensures stable geometry for 

fractional tessellation.

The left-hand diagram demonstrates the 

process of Blending from the point that a 

new vertex is added until it reaches its final 

state.

BleNDing

Our proposed tessellation scheme supports 

fractional levels of detail by “Blending” 

newly added vertices. This means that each 

newly added vertex lies in the tessellated 

surface of the current integer LOD and 

continuously changes into its final state in 

the next integer LOD. 

Continuity is achieved by interpolating 

between the average of the edge-end 

vertices and the final state of the newly 

added vertex by a weight known as the 

Blend Factor (BF).

The Blend Factor is a value between 0 and  

1, is specified for each vertex by the 

tessellator and is derived from the fractional 

parts of the edge-end vertices.

Blending is performed on the attributes of 

the post Domain Shader vertices.

By keeping UV coordinates of vertices fixed, 

our technique ensures stable geometry for 

fractional tessellation.

The left-hand diagram demonstrates the 

process of Blending from the point that a 

new vertex is added until it reaches its final 

state.

BleNDing

Our proposed tessellation scheme supports 

fractional levels of detail by “Blending” 

newly added vertices. This means that each 

newly added vertex lies in the tessellated 

surface of the current integer LOD and 

continuously changes into its final state in 

the next integer LOD. 

Continuity is achieved by interpolating 

between the average of the edge-end 

vertices and the final state of the newly 

added vertex by a weight known as the 

Blend Factor (BF).

The Blend Factor is a value between 0 and  

1, is specified for each vertex by the 

tessellator and is derived from the fractional 

parts of the edge-end vertices.

Blending is performed on the attributes of 

the post Domain Shader vertices.

By keeping UV coordinates of vertices fixed, 

our technique ensures stable geometry for 

fractional tessellation.

The left-hand diagram demonstrates the 

process of Blending from the point that a 

new vertex is added until it reaches its final 

state.

BleNDing

ModiFIeD PipeliNE

The proposal adds one extra fixed 

function stage to the tessellator 

stages of the pipeline: the Blender.

 

This unit performs the Blending on 

post Domain Shader vertices.

By moving Tessellation Factors 

from patches to vertices we make 

the Hull Shader an optional part of 

the pipeline between the patch 

assembly and the tessellator, 

reserved for optional per-patch 

work.
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Our proposal solves all major issues of current schemes. 

In particular it has the following advantages over 

DirectX’s edge based tessellation:

• More user-friendly vertex Tessellation Factors

• Very simple algorithm requiring minimal logic, with no 

special cases

• Supports fractional LOD via Blending with no artefacts

• Stable geometry is ensured by the fixed UVs

• No thin or redundant primitives 

• Spatially and temporally smooth geometry

• Generalises to any polygonal domain such as 

hexagons or octagons
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Each initial and subsequent triangle patch is processed independently and identically by triangle 

bisection. The example bisections above match the triangle patches from initial subdivision 

marked in grey. A triangle patch comprises three UVs and three TFs, one for each corner vertex.

If either of the Tessellation Factors on the end of the longest edge (in domain space) exceeds 0 

then subdivision occurs, otherwise the triangle patch forms a single primitive. When subdivision 

occurs, a new vertex is added as the average of the vertices on the end of the bisected edge and 

two new triangle patches are formed. Lastly, all Tessellation Factors are decreased by 0.5. The 

same process is then repeated on the two new triangle patches until subdivision terminates.
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Our new tessellation scheme (right) produces a range of patterns determined by per vertex TFs 

rather than the per edge TFs of current schemes. Our proposal permits large steps in TFs without 

resorting to triangle fanning unlike current methods, such as DirectX (left).
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