TRIANGLEBSECTION TESSELLATION WTH HRACTIONAL VERTEXLODS

NHRODUCTON

Triangle bisection tessellation with fractional LOD for fast subdivision of triangle, quad and isoline patches producing spatially and temporally smooth geometry

- Tessellation Factors (TFs) defined per vertex rather than per edge
- Fractional tessellation supported through "Blending"
- No thin or redundant primitives produced

TESSELLATION PATIERNS COMPARISON

Our new tessellation scheme (right) produces a range of patterns determined by per vertex TFs Our new tesselair edge TFs of current schemes. Our proposal permits large steps in TFs without resorting to triangle fanning unlike current methods, such as DirectX (left).

NHAALDOMAIN SUFBMMEION

Our tessellator takes as input a topology plus per-vertex TFs. Each TF is reduced (pseudo) log base 2 . The triangle/quad domain is subdivided into $3 / 4$ initita triangle patches by adding a middle vertex as the average of the corner vertices and reducing each TF by 0.5 . In the following stage
the triangle patches are processed independently and identically. If none of the corner TFs of the triangle domain exceeds 0 then no subdivision occurs to prevent over-tessellation.

TRIAMCLIFBIS=CTION

Each initial and subsequent triangle patch is processed independently and identically by triangle bisection. The example bisections above match the triangle patches from initial subdivision marked in grey. A triangle patch comprises three UVs and three TFs, one for each corner vertex.
If either of the Tessellation Factors on the end of the longest edge (in domain space) exceeds 0 then subdivision occurs, otherwise the triangle patch forms a single primitive. When subdivision two new triangle patches are formed Lastly, all Tessellation Factors are decreased by 0.5. The same process is then repeated on the two new triangle patches until subdivision terminates.

ZLIND|NC

Our proposed tesseliation scheme supports fractional levels of detail by "Blending" newly added vertices. This means that each newly added vertex lies in the tessellated
surface of the current integer LOD and continuously changes into its final state in the next integer LOD.
Continuity is achieved by interpolating between the average of the edge-end added vertex by a weight known as the Blend Factor (BF)
The Blend Factor is a value between 0 and 1, is specified for each vertex by the tessellator and is derived from
parts of the edge-end vertices

Blending is performed on the attributes of the post Domain Shader vertices.

By keeping UV coordinates of vertices fixed, our technique ensures stable geometry for fractional tessellation.
The left-hand diagram demonstrates the process of Blending from the point that a new
state.

Imagunation

GRACTIONALLOD COMPARISON

Our tessellation scheme significantly improves on
Direct's fractional methods by producing stable geometry $\begin{aligned} & \text { which is not affected by } \\ & \text { higher } \\ & \text { frequencies }\end{aligned}$ in attributes of the surface In contrast DirectX is known to produce instability artefacts
when geometry changes when geometry changes
abruptly as vertices move in abruptly as
UV space. When tessellating
higher
Wirect frequency surfaces DirectX
must either sacrifice detail from the surface or overremedies these issues.

GVALUATION

Our proposal solves all major issues of current schemes Directicts edge based tessellation

- More user-friendly vertex Tessellation Factors
- Very simple algorithm requiring minimal logic, with no
- Suppoports fractional LOD via Blending with no artefacts
- Stable geometry is ensured by the fixed UVs
- No thin or redundant primitives
- Spatially and temporally smooth geometry
- Generalises to any polygonal domain such as

QONCLUEION

We propose a fast and high quality tessellation scheme of low complexity requiring minimal changes to the existing tessellation stages. By moving Tessellation Factors from domain edges to their corners one eliminates the need for fanning of thin triangles. By fixing vertices in UV space
unstable geometry artefacts are removed. By continuously interpolating vertices between discrete levels of detail smooth fractional tessellation is achieved. By subdividing triangle and quad domains in the same fashion our method generalises to any polygonal domain making it more versatile to the modelling process.

