Iterative GPU Occlusion Culling with BVH

Gi Beom Lee
Sungkil Lee”
sungkil@skku.edu
Sungkyunkwan University
Suwon, South Korea

_—
NOCULL

-
- & 18.337ms
" p S

Figure 1: Comparison of our iterative occlusion culling (I0OC) with no culling (NOCULL), raster occlusion culling (ROC), and
precomputed ideal culling (REF). The blue-to-red color mapping indicates low-to-high fragment overdrawing. Culling effi-
ciency of our IOC is lower than ROC, but its efficient batch culling eventually improves overall rendering performance.

CCS CONCEPTS
+ Computing methodologies — Visibility.

KEYWORDS

real-time rendering, occlusion culling, bounding volume hierarchy

ACM Reference Format:

Gi Beom Lee and Sungkil Lee. 2020. Iterative GPU Occlusion Culling with
BVH . In Proceedings of High-Performance Graphics (Washington, D.C. 20).
ACM, New York, NY, USA, 2 pages. https://doi.org/xx.XXxx/XXXXXXX.XXXXXXX

1 BACKGROUND

Occlusion culling accelerates scene rendering by bypassing objects
hidden by potentially visible occluders. Usually, what are seen in
the past frame can be selected as the occluders, and their depth
rendering is compared against the coarse bounding proxies of po-
tential occludees. Occlusion query (OQ) in Graphics Processing
Unit (GPU) is a typical technique. OQ counts the number of visible
pixels to determine the rendering of the occludee, but its repeated
read-back causes significant stalls in the rendering pipeline. The
problem is alleviated using the scene hierarchy [3], but it does not
scale well with a deeper hierarchy of massive scenes.

“Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Washington, D.C. °20, July 16-18, 2020, Washington, D.C.

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00

https://doi.org/xx XXX

Raster occlusion culling (ROC) [1, 2] reduces the latency by di-
rectly marking visible objects during the rasterization, leveraged by
early Z and unordered buffer access. Furthermore, ROC employs in-
direct multidraw commands to avoid GPU-to-CPU read-back, which
significantly reduces the stalls. The technique is more efficient than
the classical OQ, but does not scale well with a large number of
objects due to the non-trivial amounts of fragment processing.

2 OUR APPROACH

In this poster, we present an iterative hierarchical ROC (IOC) tech-
nique that can scale up to massive scenes with higher geometry
complexities. Unlike the original ROC, we do not handle individual
objects, but use their hierarchical structures such as a Bounding
Volume Hierarchy (BVH). The BVH is iteratively traversed from
a moderate depth down to a deeper level (but not the bottom of
the tree); see Figure 2. The interior nodes are occlusion-tested in
batch. The granularity for the culling is coarser, but the light-weight
occlusion test with fewer draw calls leads to a great speedup in the
overall rendering performance.

@ Invisible node

Visible node

98ues yrdag

@® @ OO

Figure 2: Iterative occlusion culling in the scene hierarchy.

apou jea

https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

Washington, D.C. °20, July 16-18, 2020, Washington, D.C.

(a) Rooms (RM) (b) Downtown (DT) (c) Geometric figures (GF)
Figure 3: Three scenes used for experiments: rooms (2753
objects, 5k BVH nodes), downtown (31392 objects, 62k BVH
nodes), and geometric figures (72000 objects, 143k BVH
nodes). RM and DT model are provided through the courtesy

of cgtrader.com.

The BVH for the occlusion culling is traversed in a top-to-bottom
fashion as follows. We first pre-render the depth buffer of the oc-
cluders for early Z in the ROC, which are visible at the previous
frame. Given a pair of starting and bottom depths, we perform ROC
for the bounding boxes of all the interior nodes at the depth. If
the node is culled, we stop the traversal for the node, and mark
all the children in its subtrees as occluded in the visibility buffer
(VB) defined in GPU. If the node is a leaf, we directly mark it as a
potentially visible occludee in the VB. Otherwise, we tightly pack
and enqueue them for the next occlusion test, and traverse deeper.
The size of the queue is read back to the host memory to drive the
indirect multidraw call of the next occlusion test. We iterate this
down to the given bottom level. At the bottom level, all the children
in the subtrees of the visible nodes are marked as potentially visible.

3 RESULTS

We implemented our solution on an Intel i7 machine with GTX
1080 Ti at 1920x1080. Three scenes (see Figure 3) are tested with
animated camera sequences of 12s durations. The Rooms (RM)
is a relatively simple scene. The Downtown (DT) is a wide-scale
scene of a medium complexity, and the Geometric Figures (GF) is
a scene of low-polygon objects with very high depth complexity.
We compared out solution against the four existing techniques: no
culling (NOCULL), pre-computed ideal culling (REF), view-frustum
culling (VFC), and raster occlusion culling (ROC) [1, 2].

Table 1 compares our solution with ROC in terms of the culling
cost. In the simple RM scene, the iterative test is not efficient as the
ROC does. Our solution manifests itself in the large-scale scenes
(DT and GF scenes). The hierarchical occlusion test significantly
reduces the culling cost, while the coarse occlusion test adds only
marginal rendering time for the occludees; ours is 4.5x and 7.6x
faster than ROC for DT and GF scenes, respectively.

Figure 4 compares the overall performance, including culling
as well as rendering, of our solution against NOCULL, REF, VFC,
and ROC. In the RM scene, all the culling techniques does not
show significant difference as expected. For DT and GF scenes, ours
runs fastest with significant differences. In comparison, ROC runs
even slower than VFC for DT, which results from the excessive
rasterization overhead for the culling.

Gi Beom Lee and Sungkil Lee

Table 1: Comparison of ours (IOC) with VFC and ROC, as-
sessed in terms of the culling ratio and the culling cost for a
short period (12s) of pre-defined camera animations.

scene occlusion test (ms) occludee rendering (ms)
R o 40
i S5
S R 0

Il NOCULL W REF W VFC ROC IOC

o
o

40.13

&
=)

(2
o

24.43
17.93

time (ms)
N
o

=
o

1.07 2.56 2,07 2.58

RM DT GF

Figure 4: Performance comparison of rendering time for the
pre-defined camera animations.

4 LIMITATIONS

One of the obvious limitations of our solution is the manual choice
of the pair of the top and bottom levels in the hierarchy. This encour-
ages further investigation on automatically finding a depth range
for the iteration, reflecting the scene characteristics and statistics.

ACKNOWLEDGMENTS

This work was supported in part by the Midcareer and Advanced
Convergence Technology Development (on Virtual Reality Sys-
tem for Personalized Mental Healthcare Contents) R&D programs
through NRF grants funded by the Korea Government (MSIP) (Nos.
2019R1A2C2002449 and 2017M3C1B6070980).

REFERENCES

[1] Pierre Boudier and Cristoph Kubisch. 2015. GPU Driven Large Scene Rendering.
In Nvidia GPU Technology Conference. 22-34.

[2] Christoph Kubisch and Markus Tavenrath. 2014. Opengl 4.4 scene rendering
techniques. NVIDIA Corporation 5 (2014).

[3] Oliver Mattausch, Jifi Bittner, and Michael Wimmer. 2008. CHC++: Coherent
hierarchical culling revisited. In Computer Graphics Forum, Vol. 27. Wiley Online
Library, 221-230.

cgtrader.com

	1 Background
	2 Our approach
	3 Results
	4 Limitations
	Acknowledgments
	References

