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Figure 1: Comparison of our iterative occlusion culling (I0OC) with no culling (NOCULL), raster occlusion culling (ROC), and
precomputed ideal culling (REF). The blue-to-red color mapping indicates low-to-high fragment overdrawing. Culling effi-
ciency of our IOC is lower than ROC, but its efficient batch culling eventually improves overall rendering performance.
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1 BACKGROUND

Occlusion culling accelerates scene rendering by bypassing objects
hidden by potentially visible occluders. Usually, what are seen in
the past frame can be selected as the occluders, and their depth
rendering is compared against the coarse bounding proxies of po-
tential occludees. Occlusion query (OQ) in Graphics Processing
Unit (GPU) is a typical technique. OQ counts the number of visible
pixels to determine the rendering of the occludee, but its repeated
read-back causes significant stalls in the rendering pipeline. The
problem is alleviated using the scene hierarchy [3], but it does not
scale well with a deeper hierarchy of massive scenes.
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Raster occlusion culling (ROC) [1, 2] reduces the latency by di-
rectly marking visible objects during the rasterization, leveraged by
early Z and unordered buffer access. Furthermore, ROC employs in-
direct multidraw commands to avoid GPU-to-CPU read-back, which
significantly reduces the stalls. The technique is more efficient than
the classical OQ, but does not scale well with a large number of
objects due to the non-trivial amounts of fragment processing.

2 OUR APPROACH

In this poster, we present an iterative hierarchical ROC (IOC) tech-
nique that can scale up to massive scenes with higher geometry
complexities. Unlike the original ROC, we do not handle individual
objects, but use their hierarchical structures such as a Bounding
Volume Hierarchy (BVH). The BVH is iteratively traversed from
a moderate depth down to a deeper level (but not the bottom of
the tree); see Figure 2. The interior nodes are occlusion-tested in
batch. The granularity for the culling is coarser, but the light-weight
occlusion test with fewer draw calls leads to a great speedup in the
overall rendering performance.
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Figure 2: Iterative occlusion culling in the scene hierarchy.
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(a) Rooms (RM) (b) Downtown (DT) (c) Geometric figures (GF)
Figure 3: Three scenes used for experiments: rooms (2753
objects, 5k BVH nodes), downtown (31392 objects, 62k BVH
nodes), and geometric figures (72000 objects, 143k BVH
nodes). RM and DT model are provided through the courtesy

of cgtrader.com.

The BVH for the occlusion culling is traversed in a top-to-bottom
fashion as follows. We first pre-render the depth buffer of the oc-
cluders for early Z in the ROC, which are visible at the previous
frame. Given a pair of starting and bottom depths, we perform ROC
for the bounding boxes of all the interior nodes at the depth. If
the node is culled, we stop the traversal for the node, and mark
all the children in its subtrees as occluded in the visibility buffer
(VB) defined in GPU. If the node is a leaf, we directly mark it as a
potentially visible occludee in the VB. Otherwise, we tightly pack
and enqueue them for the next occlusion test, and traverse deeper.
The size of the queue is read back to the host memory to drive the
indirect multidraw call of the next occlusion test. We iterate this
down to the given bottom level. At the bottom level, all the children
in the subtrees of the visible nodes are marked as potentially visible.

3 RESULTS

We implemented our solution on an Intel i7 machine with GTX
1080 Ti at 1920x1080. Three scenes (see Figure 3) are tested with
animated camera sequences of 12s durations. The Rooms (RM)
is a relatively simple scene. The Downtown (DT) is a wide-scale
scene of a medium complexity, and the Geometric Figures (GF) is
a scene of low-polygon objects with very high depth complexity.
We compared out solution against the four existing techniques: no
culling (NOCULL), pre-computed ideal culling (REF), view-frustum
culling (VFC), and raster occlusion culling (ROC) [1, 2].

Table 1 compares our solution with ROC in terms of the culling
cost. In the simple RM scene, the iterative test is not efficient as the
ROC does. Our solution manifests itself in the large-scale scenes
(DT and GF scenes). The hierarchical occlusion test significantly
reduces the culling cost, while the coarse occlusion test adds only
marginal rendering time for the occludees; ours is 4.5x and 7.6x
faster than ROC for DT and GF scenes, respectively.

Figure 4 compares the overall performance, including culling
as well as rendering, of our solution against NOCULL, REF, VFC,
and ROC. In the RM scene, all the culling techniques does not
show significant difference as expected. For DT and GF scenes, ours
runs fastest with significant differences. In comparison, ROC runs
even slower than VFC for DT, which results from the excessive
rasterization overhead for the culling.
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Table 1: Comparison of ours (IOC) with VFC and ROC, as-
sessed in terms of the culling ratio and the culling cost for a
short period (12s) of pre-defined camera animations.
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Figure 4: Performance comparison of rendering time for the
pre-defined camera animations.

4 LIMITATIONS

One of the obvious limitations of our solution is the manual choice
of the pair of the top and bottom levels in the hierarchy. This encour-
ages further investigation on automatically finding a depth range
for the iteration, reflecting the scene characteristics and statistics.
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