
Our Approach

Previous Approaches

CHC++ [Mattausch 2008]

Iterative GPU Occlusion Culling with BVH

Occlusion culling?

Batch raster culling with fewer drawcalls:
Avoid too many per-object occlusion tests

 - Previously visible objects are chosen as occluders

 - Bounding boxes of the occludee are occlusion-tested

 - Hierarchical GPU occlusion query

A technique that bypasses hidden objects in
rendering and thereby accelerates performance.

We use a geometry-level BVH to batch-test the visibilities of the occludees with iterative visibility tests through top-
down traversal. This allows us to avoid brute-force tests for the individual occludees, achieving real-time performance

even for large-scale scenes (more than dozens of thousands objects).

Results

(a) Culling performance comparison

Gi Beom Lee Sungkil Lee
Sungkyunkwan University

- Testbed:
 Intel i7 machine on GTX 1080 Ti at 1920×1080

Raster occlusion culling [Kubisch 2015, NVIDIA 2014]

 - Direct writing to a GPU buffer with early Z

 - Indirect multidraw to hide read-back latency

Challenges

 - Fewer draw calls to determine the visibility of many objects

 - Reduction of redundant rasterization for the occlusion culling

Scalable raster occlusion culling with light-weight test

Motivation
Raster occlusion culling (ROC) requires to render the bounding boxes of all objects
not seen in the previous frame to test the visibilities of the occludees. ROC works
well up to medium-size scenes, but does not scale well with massive scenes due to
the excessive rasterization overhead for the occlusion test.

limitations

(b) Rendering performance comparison

- Manual configuration of the pair of the top and bottom levels for the iteration

- Evaluated techniques:
 no culling (NOCULL), ideal culling (REF), view frustum culling (VFC),

 raster occlusion culling (ROC), Iterative occlusion culling (IOC)

Occluder Occludee

𝐷0 𝐷1 𝐷𝑒𝑛𝑑

V I V V

V I

V

I

Visible node

Invisible node

V V V V V VV

D
e

p
th

ran

ge
Lea

f n
o

d
e

 - Top-down traversal within a pair of top and bottom depths in BVH
 - Significant reduction in the number of effective occlusion culling

9.92

1.07
2.56 2.07 2.58

17.17

1.82

8.86
10.94

8.26

40.13

1.88

28.30

24.43

17.93

40

30

20

10

0

ti
m

e
 (

m
s

)

NOCULL REF VFC ROC IOC

RM DT GF

 - 4.5 times and 7.6 times faster in DT and GF
 in the box test

- Better performance in the large scale scene with
the same culling rate of ROC

Scene ROC OursNOCULL REF

10.985 ms 8.340 ms18.337ms 2.136 ms

RM

DT

GF

scene occlusion test (ms) occludee rendering (ms)

ROC

IOC

ROC

IOC

ROC

IOC

0.41 0.40

0.40

3.50

3.58

7.81

8.04

0.61

3.47

0.78

7.96

1.05

- The traversal halts for the culled node
- Leaf nodes are marked as a potentially visible occludee
- Visible nodes are tightly packed for the next occlusion test
- All the children in the subtress of visible nodes are marked as
 potentially visible occludee at the bottom level

Algorithm

	poster.vsdx
	Page-1

