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Figure 1: The pillars of creation in visible color spectrum in the left and in near-infrared in the right. Image copyright NASA.

1 INTRODUCTION

The current trend in aerospace is the constant increase of perfor-
mance requirements for on-board processing, to support the higher
data rates and autonomy required across all space domains includ-
ing science and robotic exploration, telecom and navigation [Rosello
2018]. Such performance cannot be provided by existing space CPUs
such as the NGMP [Hjorth et al. 2015] or PowerPC 750 [Berger
et al. 2001], so new technologies including COTS devices from other
critical domains like automotive are currently explored.

Embedded GPUs are considered among the most promising en-
abling technologies, since they can offer both high performance
software processing (as opposed to existing high-performance hard-
ware processing provided by FPGAs for space) as well as low power
consumption below 10W [Kosmidis et al. 2019], which is the limit
of feasible thermal dissipation of a single component in a space
system. However, so far there is limited practical indication in in-
dustry on whether existing on-board software is a good fit for the
massively parallel GPU programming model and more importantly
whether embedded GPUs can provide the processing requirements
of future missions. In fact, until now only the standalone lossless
compression algorithm CCSDS-123 [Davidson and Bridges 2017]
has been demonstrated in a non-embedded GPU, as well as simple,
non-space specific image processing algorithms from existing GPU
libraries [Tsog et al. 2018] on a custom designed embedded GPU
platform for space. However, there is a lack of complex case studies
in the literature.

We implement for the first time a demonstrator of complex
on-board algorithm running on a GPU, the H2RG infrared detec-
tor [Jung and Crouzet 2012] used in several existing and future space
missions such as NASA’s Hubble Space Telescope, its successor
James Webb Space Telescope (JWST) and ESA’s Euclid astronomy
and astrophysics space mission [Crouzet 2011]. We demonstrate not
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only the feasibility of porting such a case study on a GPU, but also
its performance benefits by executing it on an embedded COTS GPU
platform designed for the automotive domain, which has similar
reliability requirements with low earth orbit (LEO) missions.

2 APPLICATION AND GPU
PARALLELISATION

The baseline sequential version of the Near Infrared (NIR) H2RG
BM case study is based on ESA’s implementation for the Euclid
mission. The application processes (N) raw images acquired from
the HAWAII-2 sensor — an integrated circuit for visible and infrared
astronomy applications — to produce a single output image. More
details are provided in [Jung and Crouzet 2012].

Although the algorithm operates over image matrices, the GPU
parallelisation of the H2RG algorithm is not straightforward, since
a significant part of the application requires accessing data with
complex loop dependencies, complicating its GPU implementation.
Despite this challenge, we managed to port the entire application to
the GPU, so that the CPU is only responsible to offload computations
to the GPU.

The application was targeted to an NVIDIA embedded GPU so
for that reason we perform our implementation in CUDA. Minor
modifications were needed in the original code to allow the port-
ing to GPU code. In Figure 2 we present a high level view of the
parallelisation strategy we have followed. In order to optimise our
implementation, we took advantage of parallelism in several levels:
at frame level, application stage level and intra-kernel.

As shown in the figure, we process consecutive frames in dif-
ferent processing pipelines, which are known as streams in CUDA
terminology. This allows a processing scheme in which the memory
transfer of one frame is overlapped in time with the GPU execution
of the application stages of the previous frame. Within each process-
ing pipeline, the stages of the algorithm are executed one after the
other. Moreover, when the data copy one of the frames has finished,
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Figure 2: High level view of the H2RG case study GPU im-
plementation.

its stages are also executed on the GPU, since the GPU is capable
of executing multiple kernels from different streams concurrently,
when both their computational resources can be satisfied. In addi-
tion, even when it is not possible to execute two kernels at the same
time, the utilisation of the GPU is maximised, since there is always
a delay between the CPU offloading of one kernel and its execution
and termination, which could leave the GPU underutilised if only
one stream was used.

Our implementation is parametric with respect to the above
described different parallelism factors, so the same code imple-
mentation can be configured to be executed efficiently on other
embedded GPUs, too.

In our platform the optimal performance has been achieved by
processing 2 frames in parallel. Further increasing the number of
parallel frames only increased the memory consumption — since
each image pipeline requires its own state for processing a frame
such as the input image and its intermediate results — without
performance gains or resulting in slowdown.

3 RESULTS

We optimised our code on the NVIDIA’s Xavier platform, designed
to reach the highest certification level in the automotive domain,
ASIL-D. As such, it includes reliability features such as ECC and as
a consequence, it can be used for space missions up to LEO without
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Figure 3: H2RG GPU version speedup over the CPU on
NVIDIA Xavier.

any further radiation mitigation techniques. The platform includes
ARMv8 Carmel CPUs and a powerful embedded GPU based on the
Volta microarchitecture, which are clocked at 1.2 GHz and 520 MHz
at its 10W TDP (thermal design power) performance mode.

Figure 3 presents the relative performance of the GPU imple-
mentation over the sequential version in the same platform, for
various input sizes. The GPU implementation is 3.5% faster than
CPU for the smallest size, and up to 15X for larger sizes similar to
the requirements of future missions.

As an indication of comparison with existing space processors [Jung
and Crouzet 2012], the CPU implementation for the standard 2Kx2K
image size is 98x faster than the LEONZ at 80 MHz and 15.5X than
the PowerPC 750 running at 800MHz, while our GPU implementa-
tion is 806X and 128X faster respectively. Such a massive increase
in performance of a currently used image resolution shows clearly
that embedded GPUs can satisfy the performance requirements of
future space missions.
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