
Euclid-NIR GPU: Embedded GPU-accelerated
Near-Infrared Image Processing for On-board Space Systems

Iván Rodriguez-Ferrández, Leonidas Kosmidis
Ivan.rodriguez@bsc.es, leonidas.kosmidis@bsc.es

Introduction
On-board processing requirements of future space missions are increasing.
• New missions types:
• Space debris recollection
• Ship to ship docking and refuelling
• Deep space missions communications due to speed of light limitation

Embedded GPUs can provide the required performance [1] thanks to:
• high performance capabilities
• low-power consumption.
We show a demonstration of a GPU parallelisation of an on-board
algorithm[2], within the framework of the GPU4S (GPU for Space) project
funded by ESA. This algorithm is oriented in Near Infrared (NIR) image
processing, which is significantly demanding and its employed by several
space telescopes, such as ESA’s Euclid, NASA’s Hubble and its successor.

Experimental Results
We execute the application end to end with different input sizes
Performance of CPU version over the GPU on the NVIDIA Xavier:

CUDA Implementation

This work is funded by ESA under the GPU4S (GPU for Space) project (ITT AO/1-9010/17/NL/AF). It is also partially supported by the Spanish Ministry of
Economy and Competitiveness (MINECO) under grants PID2019-107255GB and FJCI-2017-34095 and the HiPEAC Network of Excellence.

Pillars of creation in visible left, and in near infrared right.
Credit: NASA Hubble space telescope imagery

For the CUDA version we exploit all possible parallelism:
• Streams
• Overlapping of kernel executions and transfers
• Concurrent kernel executions
For all the code we use manual memory allocation.
Using a configurable number of streams we maximise the application
parallelisation. The full application was tuned up for the NVIDIA Xavier
platform, were the optimal number of streams are two. We can process an
image while copying the next one, improving the end to end performance.

Example of the input and output images

0

20

40

60

80

100

120

Leon 2 PowerPc 750
0

200

400

600

800

1000

Leon 2 PowerPc 750

Original Code
We base our code in the Euclid NIR sequential version that is available
though the ESA website [3]. We chose this code because:
• Lack of industrial demonstrations of space applications using GPUs
• Only closed source projects

• Real application for space image processing

We made two changes to the original code to become more GPU friendly:
• Removed global variables because the GPU and CPU have different

address spaces. Instead, they were converted to kernel parameters.
• Removed the on-line generation of the image to an off-line generation,

which is similar to the deployment with a real space image sensor.

Comparison with state-of-the-art space processors [3] for 2Kx2K:

References
[1] L. Kosmidis et al. GPU4S: Embedded GPUs for Space. In Digital System

Design (DSD) Euromicro Conference, 2019.
[2] I.Rodriguez, L. Kosmidis, O. Notebaert, F. J. Cazorla, and D. Steenari. An

On-board Algorithm Implementation on an Embedded GPU: A Space
Case Study. Design, Automation Test in Europe Conference (DATE), 2020

[3] Andreas Jung and Pierre-Elie Crouzet. The H2RG Infrared Detector:
Introduction and Results of Data Processing on Different Platforms.
European Space Agency (ESA). 2012

http://www.esa.int/Our_Activities/Space_Engineering_Technology/Onboard
_Data_Processing/General_Benchmarking_and_Specific_Algorithms.

Xavier CPU Speedup over Space CPUs Xavier GPU Speedup over Space CPUs

Raw test image from the sensor Final processed image

Vertical lines represent multiple detected polarized cosmic rays

Massive increase in performance of a currently used image resolution
shows clearly that embedded GPUs can satisfy the performance
requirements of future space missions.

LEON2 runs at 80 MHz and PowerPC 750 runs at 800MHz

GPU Speedup over the sequential CPU implementation

0

2

4

6

8

10

12

14

16

2048x2048 4096x4096 8192x8192 16384x16384

http://www.esa.int/Our_Activities/Space_Engineering_Technology/Onboard_Data_Processing/General_Benchmarking_and_Specific_Algorithms

