
Evaluation of Graphics-based General Purpose Computation
Solutions for Safety Critical Systems: An Avionics Case Study

Marc Benito∗
Matina Maria Trompouki

Leonidas Kosmidis
Barcelona Supercomputing Center (BSC)
Universitat Politècnica de Catalunya (UPC)

Juan David Garcia
Sergio Carretero

Airbus Defence and Space
Getafe, Spain

Ken Wenger

CoreAVI
Waterloo, ON, Canada

Figure 1: Prototype Airbus application which was ported and evaluated in OpenGL SC 2 and Brook SC.

1 INTRODUCTION
Current safety-critical systems require increased performance to
support advanced functionalities such as autonomous operation.
Graphics Processing Units (GPUs) can provide this required per-
formance, however their general purpose programming models
like CUDA or OpenCL cannot be used, since they are based on
programming features not allowed in safety-critical systems like
pointers and dynamic memory allocation [Trompouki and Kosmidis
2018]. This prevents their software certification according to safety
standards such as ISO26262 (automotive) and DO-178B (avionics).

2 OUR APPROACH
In order to allow the certification of general purpose GPU software
in critical systems, two solutions currently exist. First, OpenGL
SC 2 is an OpenGL subset designed for safety critical systems.
Although directly programming general purpose algorithms on
graphics is possible, it is very complex and error prone. The second
solution, the open source technology Brook SC [Leonidas Kosmidis,
Matina Maria Trompouki et al 2018], based on [Trompouki and
Kosmidis 2018], allows to program safety-critical applications in
a CUDA-like high-level general purpose GPU language, Brook,
which does not allow pointers and dynamic memory allocation and
is transformed into OpenGL SC 2, retaining the advantage of the
GPU code certification. Moreover, unlike closed-source toolchains
like CUDA and OpenCL with massive code-bases, the small size
of Brook SC and its open source nature simplifies the collection of
the required evidence to support its tool qualification, as studied
in [Trompouki and Kosmidis 2019] for ISO 26262.

∗{name.surname}@bsc.es

In this work, we compare both solutions in terms of performance
and programming productivity, using an avionics application run-
ning on a safety-critical GPU software and hardware, consisting
of a commercial, certified OpenGL SC 2 driver and an AMD E8860
avionics-grade GPU. In this Bachelor’s thesis project [Benito 2019],
awarded with a 2019 HiPEAC Technology Transfer Award, an Air-
bus prototype application shown in Figure 1, written in Vulkan and
performing general-purpose computations was ported to both solu-
tions. The application consists of a graphics part (left) and general
purpose computation (right), processing images from a camera.

The porting to Brook SC was completed in record time (3 days)
versus 3weeks required for the OpenGL SC 2 port, without any prior
knowledge of either solution. This difference is reflected in the fact
that the Brook SC port requires an order of magnitude less lines of
code (LOC), 160 compared to the 1200 LOC required for the OpenGL
SC 2 version. In terms of performance, both implementations are
equivalent, achieving image processing rate of 60 frames per second
(fps) as the original application. However, when vsync is disabled
theOpenGL SC 2 achieves 2800 fps and the Brook SC 2500 fps, which
represents a minor overhead for a massive leap in programmability
and productivity compared to direct OpenGL SC 2 development.

REFERENCES
Marc Benito. 2019. Analysis and Evaluation of Embedded Graphics Solutions for Critical

Systems. Bachelor’s thesis. Universitat Politècnica de Catalunya (UPC).
Leonidas Kosmidis, Matina Maria Trompouki et al. 2018. Brook SC.

http://github.com/lkosmid/brook.
Matina Maria Trompouki and Leonidas Kosmidis. 2018. Brook Auto: High-Level

Certification-Friendly Programming for GPU-Powered Automotive Systems. In
Proceedings of the 55th Annual Design Automation Conference (DAC ’18).

Matina Maria Trompouki and Leonidas Kosmidis. 2019. BRASIL: A High-Integrity
GPGPU Toolchain for Automotive Systems. In Proceedings of the 38th IEEE Interna-
tional Conference on Computer Design (ICCD ’19).


	1 Introduction
	2 Our approach
	References

