Evaluation of Graphics-based General Purpose Computation Solutions
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Motivation
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 Safety Critical Systems require higher performance to support new

advanced functionalities

Characteristics of Safety Critical Systems:
* Certification: Need to comply with safety standards: 1SO026262 / DO178
* \Very conservative in terms of hardware and software: simple
processors, mainly single core

Embedded GPUs can
provide the required
performance

* Massively parallel architectures, high computational power
and high energy efficiency, in thermally limited systems
* OpenCL and CUDA dominate the market of GPGPU
programming in HPC
* Easily programmable APIs
* Cannot be used in safety critical systems because of
pointers and dynamic memory allocation
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* In this Bachelor’s thesis [1] awarded with a Technology Transfer Award we:
* Analyze their differences compared to desktop graphics APIs

* Demonstrate how a safety-critical application written in a non-certifiable
programming model can be converted to use safety-critical APlIs.

* Evaluate performance and programmability trade-offs

OpenGL and Vulkan versions diagram

Initial prototype GPU-based avionics application, written in Vulkan and
ported to OpenGL SC 2 following the guidelines of [2][3].
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OpenGL 1.3 - 2001
Fixed function graphics
ARB assembly added
Immediate mode only
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Vulkan 1.0 — 2016
Explicit Graphics and Compute
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OpenGL 2.0 - 2004
Vertex and Fragment Shader
programmable pipeline
ARB assembly removed
Retained mode added

Brook SC Porting and Comparison

Brook SC [4][5][6] generates automatically OpenGL SC 2 code from a
CUDA-like language. Comparison with the handwritten version:

* Porting completed in few days with no previous knowledge

* Very high productivity

* An order of magnitude reduction in the amount of code

* Negligible impact in performance
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Performance Evaluation on an avionics grade AMD E8860 GPU
* CoreAVI| OpenGL SC 2.0 driver, Open source AMD OpenGL ES 2.0 driver
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Obtained performance: foptimized)

 All variants meet the target refresh rate of the avionics display (60 FPS)

* Higher performance on OpenGL SC 2.0 driver than on OpenGL ES 2.0

* Brook SC compute performance is close to the Native OpenGL ES 2.0

* Texture sharing optimization between compute and graphics contexts
doubles performance, by eliminating unnecessary texture copies

* Future Brook SC+OpenGL SC 2.0 optimization using FBO compositing is
expected to increase performance further, by eliminating an extra
fragment shader with respect to the OpenGL SC 2.0 implementation
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Visual output of the Avionics Application
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The display is divided in four regions

* The application uses both graphics and general purpose computations

* The first region is the upper left zone of the screen with a rotating 3D
model of a plane. We load the mesh, then apply a basic shader and
finally we draw it in a frame buffer.

* The second region is the upper right zone of the screen with a plane
image obtained from a camera. The image is processed with general
purpose computations and the result is written to the framebuffer.

* Finally, we draw the framebuffer to the output screen.
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