
Motivation

Evaluation of Graphics-based General Purpose Computation Solutions
for Safety Critical Systems: An Avionics Case Study

Marc Benito Bermúdez, Matina Maria Trompouki, Leonidas Kosmidis
Juan David Garcia, Sergio Carretero, Ken Wenger

{marc.benito, leonidas.Kosmidis}@bsc.es

• Safety Critical Systems require higher performance to support new
advanced functionalities
Characteristics of Safety Critical Systems:

• Certification: Need to comply with safety standards: ISO26262 / DO178
• Very conservative in terms of hardware and software: simple
processors, mainly single core

This work has been partially supported by the HiPEAC Network of Excellence with a Technology Transfer Award 2019. Leonidas Kosmidis is also funded by the Spanish Ministry of
Economy and Competitiveness (MINECO) under a Juan de la Cierva Formación postdoctoral fellowship (FJCI-2017-34095).

References
[1] Benito, M., Analysis and Evaluation of Embedded Graphics Solutions for Critical Systems,

Bachelor’s Thesis, Faculty of Informatics, Universitat Politècnica de Catalunya (UPC),
Barcelona, Spain

[2] Trompouki et al, Towards General Purpose Computations on Low-End Mobile GPUs. DATE’16
[3] Trompouki et al, Optimisation Opportunities and Evaluation for GPGPU applications on Low-

End Mobile GPUs. DATE’17
[4] Trompouki et al, Brook Auto: High-level Certification-friendly Programming for GPU

powered automotive systems, DAC’18
[5] Trompouki et al, BRASIL: A High-Integrity Compiler for Automotive Systems. ICCD’19
[6] Kosmidis et. al, Brook SC, https://github.com/lkosmid/brook

• Massively parallel architectures, high computational power
and high energy efficiency, in thermally limited systems
• OpenCL and CUDA dominate the market of GPGPU
programming in HPC

• Easily programmable APIs
• Cannot be used in safety critical systems because of
pointers and dynamic memory allocation

• In this Bachelor’s thesis [1] awarded with a Technology Transfer Award we:
• Analyze their differences compared to desktop graphics APIs
• Demonstrate how a safety-critical application written in a non-certifiable
programming model can be converted to use safety-critical APIs.
• Evaluate performance and programmability trade-offs

OpenGL and Vulkan versions diagram Visual output of the Avionics Application

• Airbus Defence and Space Getafe (Madrid), Spain, provided
the prototype GPU-based avionics application in Vulkan
• CoreAVI provided the certified OpenGL SC 2 driver and an
avionics-grade AMD E8860 GPU

Brook SC Porting and Comparison

Embedded GPUs can
provide the required

performance

The display is divided in four regions
• The application uses both graphics and general purpose computations
• The first region is the upper left zone of the screen with a rotating 3D

model of a plane. We load the mesh, then apply a basic shader and
finally we draw it in a frame buffer.

• The second region is the upper right zone of the screen with a plane
image obtained from a camera. The image is processed with general
purpose computations and the result is written to the framebuffer.

• Finally, we draw the framebuffer to the output screen.

Initial prototype GPU-based avionics application, written in Vulkan and
ported to OpenGL SC 2 following the guidelines of [2][3].

Brook SC [4][5][6] generates automatically OpenGL SC 2 code from a
CUDA-like language. Comparison with the handwritten version:
• Porting completed in few days with no previous knowledge
• Very high productivity
• An order of magnitude reduction in the amount of code
• Negligible impact in performance

Vulkan
(original code)

OpenGL SC 2 OpenGL SC 2
(compute)

Brook SC
(compute)

0

5

10

15

20

25

30

35
Development Time (days)

Vulkan
(original code)

OpenGL SC 2 OpenGL SC 2
(compute)

Brook SC
(compute)

0

500

1000

1500

2000

2500

3000

3500

4000

4500 Lines of code (approximation)

Acknowledgements

Compute

Shader
Basic

Shader

Processed Image3D Image

OpenGL SC 2 OpenGL SC 2
(compute)

Brook SC
(compute)

Brook SC +
OpenGL SC 2

Brook SC +
OpenGL SC 2
(Optimized)

OpenGL ES 2 OpenGL ES 2
(compute)

Brook SC
(compute)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

FPS

Performance Evaluation on an avionics grade AMD E8860 GPU
• CoreAVI OpenGL SC 2.0 driver, Open source AMD OpenGL ES 2.0 driver

Obtained performance:
• All variants meet the target refresh rate of the avionics display (60 FPS)
• Higher performance on OpenGL SC 2.0 driver than on OpenGL ES 2.0
• Brook SC compute performance is close to the Native OpenGL ES 2.0
• Texture sharing optimization between compute and graphics contexts

doubles performance, by eliminating unnecessary texture copies
• Future Brook SC+OpenGL SC 2.0 optimization using FBO compositing is

expected to increase performance further, by eliminating an extra
fragment shader with respect to the OpenGL SC 2.0 implementation

https://github.com/lkosmid/brook

