Evaluation of Graphics-based General Purpose Computation Solutions for Safety Critical Systems: An Avionics Case Study Barcelona AIRBUS

Center Centro Nacional de Supercomputaciór **UNIVERSITAT POLITÈCNICA**

DE CATALUNYA

Supercomputing

Marc Benito Bermúdez, Matina Maria Trompouki, Leonidas Kosmidis Juan David Garcia, Sergio Carretero, Ken Wenger {marc.benito, leonidas.Kosmidis}@bsc.es

Motivation

Embedded GPUs can provide the required

performance

• Massively parallel architectures, high computational power and high energy efficiency, in thermally limited systems

- OpenCL and CUDA dominate the market of GPGPU programming in HPC
 - Easily programmable APIs
 - Cannot be used in safety critical systems because of pointers and dynamic memory allocation

• In this Bachelor's thesis [1] awarded with a **Technology Transfer Award** we: • Analyze their differences compared to desktop graphics APIs

• Safety Critical Systems require higher performance to support new advanced functionalities

Characteristics of Safety Critical Systems:

• Certification: Need to comply with safety standards: ISO26262 / DO178 • Very conservative in terms of hardware and software: simple processors, mainly single core

OpenGL and Vulkan versions diagram

Initial prototype GPU-based avionics application, written in Vulkan and ported to OpenGL SC 2 following the guidelines of [2][3].

Brook SC Porting and Comparison

• Demonstrate how a safety-critical application written in a non-certifiable programming model can be converted to use safety-critical APIs. • Evaluate performance and programmability trade-offs

Visual output of the Avionics Application

- Brook SC [4][5][6] generates automatically OpenGL SC 2 code from a CUDA-like language. Comparison with the handwritten version:
- Porting completed in few days with no previous knowledge
- Very high productivity
- An order of magnitude reduction in the amount of code
- Negligible impact in performance

Programming	Vulkan	OpenGL SC 2	OpenGL SC 2	Brook SC
language	(original code)		(general-purpose compute)	(general-purpose compute)
Development time (days)	31	17	9	2.5
Lines of code (approx)	4000	1400	1200	160

Performance Evaluation on an avionics grade AMD E8860 GPU

• CoreAVI OpenGL SC 2.0 driver, Open source AMD OpenGL ES 2.0 driver

■ FPS

Screen (output)

The display is divided in four regions

- The application uses both graphics and general purpose computations
- The first region is the upper left zone of the screen with a rotating 3D model of a plane. We load the mesh, then apply a basic shader and finally we draw it in a frame buffer.
- The second region is the upper right zone of the screen with a plane image obtained from a camera. The image is processed with general purpose computations and the result is written to the framebuffer.
- Finally, we draw the framebuffer to the output screen.

Acknowledgements

• Airbus Defence and Space Getafe (Madrid), Spain, provided the prototype GPU-based avionics application in Vulkan CoreAVI provided the certified OpenGL SC 2 driver and an avionics-grade AMD E8860 GPU

- Higher performance on OpenGL SC 2.0 driver than on OpenGL ES 2.0 • Brook SC compute performance is close to the Native OpenGL ES 2.0
- Texture sharing optimization between compute and graphics contexts doubles performance, by eliminating unnecessary texture copies
- Future Brook SC+OpenGL SC 2.0 optimization using FBO compositing is expected to increase performance further, by eliminating an extra fragment shader with respect to the OpenGL SC 2.0 implementation

References

- [1] Benito, M., Analysis and Evaluation of Embedded Graphics Solutions for Critical Systems, Bachelor's Thesis, Faculty of Informatics, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- [2] Trompouki et al, Towards General Purpose Computations on Low-End Mobile GPUs. DATE'16 [3] Trompouki et al, Optimisation Opportunities and Evaluation for GPGPU applications on Low-End Mobile GPUs. DATE'17
- [4] Trompouki et al, Brook Auto: High-level Certification-friendly Programming for GPU powered automotive systems, DAC'18
- [5] Trompouki et al, BRASIL: A High-Integrity Compiler for Automotive Systems. ICCD'19
- [6] Kosmidis et. al, Brook SC, <u>https://github.com/lkosmid/brook</u>

