Evaluation of Graphics-based General Purpose Computation Solutions

®
¥

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

UNIVERSITAT POLITECNICA
DE CATALUNYA

Marc Benito Bermudez, Matina Maria Trompouki, Leonidas Kosmidis
Juan David Garcia, Sergio Carretero, Ken Wenger e
{marc.benito, leonidas.Kosmidis}@bsc.es

for Safety Critical Systems: An Avionics Case Study @ arsus

DEFENCE & SF‘ACE

\

Motivation

,u;!!T ‘\l |
: .. 0\u ml_..

 Safety Critical Systems require higher performance to support new

advanced functionalities

Characteristics of Safety Critical Systems:
* Certification: Need to comply with safety standards: 1SO026262 / DO178
* \Very conservative in terms of hardware and software: simple
processors, mainly single core

Embedded GPUs can
provide the required
performance

* Massively parallel architectures, high computational power
and high energy efficiency, in thermally limited systems
* OpenCL and CUDA dominate the market of GPGPU
programming in HPC
* Easily programmable APIs
* Cannot be used in safety critical systems because of
pointers and dynamic memory allocation

) 4

* In this Bachelor’s thesis [1] awarded with a Technology Transfer Award we:
* Analyze their differences compared to desktop graphics APIs

* Demonstrate how a safety-critical application written in a non-certifiable
programming model can be converted to use safety-critical APlIs.

* Evaluate performance and programmability trade-offs

OpenGL and Vulkan versions diagram

Initial prototype GPU-based avionics application, written in Vulkan and
ported to OpenGL SC 2 following the guidelines of [2][3].

penGL.

OpenGL 3.0 — 2009
Vertex and Fragment Shader
programmable pipeline
Immediate mode deprecated

penGL|E&3

OpenGL SC 1.0 — 2005
Fixed function graphics
safety critical subset

penGLI@w—>

/ OpenGL SC 2.0 - 2016

penGLES. ——/@penGLES. —

safety critical subset
OpenGLES 1.0 - 2003 OpenGLES 2.0 - 2007

Fixed function graphics Shader programmable pipeline
embedded sistems subset embedded sistems subset
Immediate mode removed
¢

penGL.

OpenGL 1.3 - 2001
Fixed function graphics
ARB assembly added
Immediate mode only

t ulikan.

Vulkan 1.0 — 2016
Explicit Graphics and Compute

penGL.

OpenGL 2.0 - 2004
Vertex and Fragment Shader
programmable pipeline
ARB assembly removed
Retained mode added

Brook SC Porting and Comparison

Brook SC [4][5][6] generates automatically OpenGL SC 2 code from a
CUDA-like language. Comparison with the handwritten version:

* Porting completed in few days with no previous knowledge

* Very high productivity

* An order of magnitude reduction in the amount of code

* Negligible impact in performance

35 Devel T (days) 4500
B Development Time (days
30 4000

3500

2> 3000
2500

2000

1500

1000

B

] 0

20
Vulkan OpenGLSC2 OpenGLSC2 BrookSC

M Lines of code (approximation)

Vulkan OpenGLSC2 OpenGLSC2 BrookSC

15
10
5
0

(original code) (compute) (compute) (original code) (compute) (compute)
Programming Vulkan OpenGL SC 2 OpenGL SC 2 Brook SC
language (original code) (general-purpose compute) | (general-purpose compute)
Development time (days) 31 17 9 2.5
Lines of code (approx) 4000 1400 1200 160

Performance Evaluation on an avionics grade AMD E8860 GPU
* CoreAVI| OpenGL SC 2.0 driver, Open source AMD OpenGL ES 2.0 driver

M FPS

OpenGLSC2 OpenGLSC?2 Brook SC Brook SC + Brook SC+ OpenGLES2 OpenGLES?2 Brook SC
(compute) (compute) OpenGLSC2 OpenGLSC?2 (compute) (compute)

Obtained performance: foptimized)

 All variants meet the target refresh rate of the avionics display (60 FPS)

* Higher performance on OpenGL SC 2.0 driver than on OpenGL ES 2.0

* Brook SC compute performance is close to the Native OpenGL ES 2.0

* Texture sharing optimization between compute and graphics contexts
doubles performance, by eliminating unnecessary texture copies

* Future Brook SC+OpenGL SC 2.0 optimization using FBO compositing is
expected to increase performance further, by eliminating an extra
fragment shader with respect to the OpenGL SC 2.0 implementation

RERNNWWEARUT
U1IOUTIOUVTIOUTIOU1O

O OO0 000
O OCOOCOOOOO0O0O

Visual output of the Avionics Application

j
=

The display is divided in four regions

* The application uses both graphics and general purpose computations

* The first region is the upper left zone of the screen with a rotating 3D
model of a plane. We load the mesh, then apply a basic shader and
finally we draw it in a frame buffer.

* The second region is the upper right zone of the screen with a plane
image obtained from a camera. The image is processed with general
purpose computations and the result is written to the framebuffer.

* Finally, we draw the framebuffer to the output screen.

Acknowledgements

* Airbus Defence and Space Getafe (Madrid), Spain, provided
the prototype GPU-based avionics application in Vulkan
* CoreAVI provided the certified OpenGL SC 2 driver and an

avionics-grade AMD E8860 GPU)

© AIRBUS

DEFENCE & SPACE

References

[1] Benito, M., Analysis and Evaluation of Embedded Graphics Solutions for Critical Systems,
Bachelor’s Thesis, Faculty of Informatics, Universitat Politecnica de Catalunya (UPC),
Barcelona, Spain

[2] Trompouki et al, Towards General Purpose Computations on Low-End Mobile GPUs. DATE’16

[3] Trompouki et al, Optimisation Opportunities and Evaluation for GPGPU applications on Low-
End Mobile GPUs. DATE’17

[4] Trompouki et al, Brook Auto: High-level Certification-friendly Programming for GPU
powered automotive systems, DAC’18

[5] Trompouki et al, BRASIL: A High-Integrity Compiler for Automotive Systems. ICCD’19

[6] Kosmidis et. al, Brook SC, https://github.com/lkosmid/brook

This work has been partially supported by the HIPEAC Network of Excellence with a Technology Transfer Award 2019. Leonidas Kosmidis is also funded by the Spanish Ministry of H
Economy and Competitiveness (MINECO) under a Juan de la Cierva Formacion postdoctoral fellowship (FICI-2017-34095).

eI ARCHITECTURE

https://github.com/lkosmid/brook

