
High-Performance Software
Rasterization on GPUs

Samuli Laine Tero Karras

NVIDIA Research

§  Graphics pipeline (OpenGL/D3D)
§  Driven by dedicated hardware
§  Executes user code in shaders

§  What’s next in programmability?

Graphics and Programmability

§  But what does it mean?
§  Another API?
§  More programmable stages?
§  Coupling between CUDA/OpenCL and OpenGL/D3D?
§  Or ”it’s just a program”?

Programmable Graphics Pipeline

§  Try and implement a full pixel pipeline using CUDA
§  From triangle setup to ROP

§  Obey fundamental requirements of gfx pipe
§  Maintain input order
§  Hole-free rasterizer with correct rasterization rules

§  Prefer speed over features

Our Approach

§  Establish a firm data point through careful experiment

§  Provide fully programmable platform for exploring algorithms
that extend the hardware gfx pipe

§  Ideas for future hardware
§  Ultimate goal = flexibility of software, performance of fixed-function

hardware

Project Goals

§  Programmable ROP
§  Stochastic rasterization
§  Non-linear rasterization
§  Non-quad derivatives

§  Quad merging
§  Decoupled sampling
§  Compact after discard
§  etc.

§  Very simple rasterization pipeline
§  Each triangle processed by one thread
§  Blit pixels directly to DRAM using atomics

§  Limitations
§  Cannot retain inputs order
§  Limited support for ROP operations (dictated by atomics)
§  Large triangles à game over

§  We are 15x faster on average
§  Larger difference for high resolutions

Previous Work: FreePipe [Liu et al. 2010]

§  Run everything in parallel
§  We need a lot of threads to fill the machine

§  Minimize amount of synchronization
§  Avoid excessive use of atomics

§  Focus on load balancing
§  Graphics workloads are wild

Design Considerations

§  Chunker-style pipeline with four stages

Triangle setup à Bin raster à Coarse raster à Fine raster

§  Run data in large batches
§  Separate kernel launch for each stage

§  Keep data in input order all the time

Pipeline Structure

Chunking to Bins and Tiles
Frame buffer

Bin

16x16 tiles
128x128 px Tile

8x8 px

Pixel

§  Quick look at each stage

§  More details in the paper

Pipeline Stages

Triangle Setup

positions, attributes
Vertex buffer

Index buffer
. . .

Triangle Setup

Triangle data buffer
. . .

edge eqs.
u/v pleqs
zmin
etc.

§  Fetch vertex indices and positions
§  Clip if necessary (has guardband)
§  Frustum, backface and between-samples cull
§  Setup screen-space pleqs for u/w, v/w, z/w, 1/w
§  Compute zmin for early depth cull in fine raster

§  One-to-one mapping between input and output
§  Trivial to employ full chip while preserving ordering

Triangle Setup

Bin Raster

Bin Raster
SM 0

Triangle data buffer
. . .

Bin Raster
SM 1

Bin Raster
SM 14

. . .

IDs of triangles that overlap bin

§  Pick triangle batch (atomic, 16k tris)

§  Read 512 set-up triangles

§  Compact/expand according to culling/clipping results
§  Efficient within thread block

§  Repeat until has enough triangles to utilize all threads

Bin Raster, First Phase

§  Rasterize
§  Determine bin coverage for each triangle (1 thread per tri)
§  Fast paths for 2x2 and smaller footprints

§  Output
§  Output to per-SM queue à no sync between SMs

Bin Raster, Second Phase

Coarse Raster

. . .

IDs of triangles that overlap tile

One coarse raster SM has
exclusive access to the bin
it’s processing

Coarse Raster
SM n

§  Input Phase
§  Merge from 15 input queues (one per bin SM)
§  Continue until enough triangles to utilize all threads

§  Rasterize
§  Determine tile coverage for each triangle (1 thread per tri)
§  Fast paths for small / largely overlapping triangles

§  Output
§  Highly varying number of output items à divide evenly to threads
§  Only one SM outputs to tiles of any given bin à no sync needed

Coarse Raster

Fine Raster
IDs of triangles that overlap tile

Pixel data in FB

One fine raster warp has
exclusive access to the tile
it’s processing

Write tile once
to DRAM

Read tile once from
DRAM to shared

Fine Raster
warp n

§  Pick tile, read FB tile, process, write FB tile

§  Input
§  Read 32 triangles in shared memory
§  Early z kill based on triangle zmin and tile zmax
§  Calculate pixel coverage using LUTs (153 instr. for 8x8 stamp)
§  Repeat until has at least 32 fragments

§  Raster
§  Process one fragment per thread, full utilization
§  Shade and ROP

Fine Raster

Tidbit 1: Coverage Calculation

§  Step along edge (Bresenham-like)
§  Use look-up tables to generate coverage masks
§  ~50 instructions for 8x8 stamp, one edge

Tidbit 2: Fragment Distribution

§  In input phase, calculate coverage and store in list
§  In shading phase, detect triangle changes and calculate

triangle index and fragment in triangle

Input Phase Shading Phase

Test Scenes

Call of Juarez scene courtesy of Techland
S.T.A.L.K.E.R.: Call of Pripyat scene courtesy of GSC Game World

Results: Performance

Frame rendering time in ms (depth test + color, no MSAA, no blending)

Results: Memory Usage

San
Miguel Juarez Stalker City Buddha

Scene data 189 24 11 51 29

Triangle setup data 420.0 42.2 26.9 67.9 84.0

Bin queues 4.0 1.5 1.2 0.9 2.0

Tile queues 4.4 2.9 2.2 2.2 1.5

Memory usage in MB

Comparison to Hardware (1/3)

– Resolution
§  Cannot match hardware in raster, z kill + compact
§  Currently support max 2K x 2K frame buffer, 4 subpixel bits

– Attributes
§  Fetched when used à bad latency hiding
§  Expensive interpolation

– Antialiasing
§  Hardware nearly oblivious to MSAA, we much less so

Comparison to Hardware (2/3)

– Memory usage, buffering through DRAM
§  Performance implications of reduced buffering unknown
§  Streaming through on-chip memory would be much better

+ Shader complexity
§  Shader performance theoretically the same as in graphics pipe

+ Frame buffer bandwidth
§  Each pixel touched only once in DRAM

Comparison to Hardware (3/3)

+ Extensibility
§  Need one stage to do something extra?
§  Need a new stage altogether?
§  You can actually implement it

+ Specialization to individual applications
§  Rip out what you don’t need, hard-code what you can

§  Shader performance boosters
§  Compact after discard, quad merging, decoupled sampling, …

§  Things to do with programmable ROP
§  A-buffering, order-independent transparency, …

§  Stochastic rasterization

§  Non-linear rasterization

§  (Your idea here)

Exploration Potential

The Code is Out There

http://code.google.com/p/cudaraster/

§  The entire codebase is open-sourced and released

Thank You

§  Questions

